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ABSTRACT

This Program Method ond Usage document summarizes the analytic method and describes
the usage of a CDC 6600 FORTRAN 1V digital computer program which uses minimum
energy principles to solve for compressive buckling loads and displacement pattern of
stiffened plates built up of orthotropic laminated flat plate elements as well as beam
elements (e.g. integral panels, corrugated piates). The program takes advantage of
the repetitive nature of the problem, and only one of the repetitive parts and the end
parts of the stiffened plate need to be described in the input together with the number
of repetitions. The program can handle a maximum of 25 plote elements with up to 25
laminas and 10 beam elements with up to 35 faminas. The plate caonnot be of more
than 10 different types in the sense that their stiffnesses are the same. When the
geometry and material constants are given the program will calculate the buckling load
and optionally also the displacement pattern for the chosen boundary conditions. The
unloaded sides can be free, simply supported, or clamped or be supported by a beam
element. The loaded edges are simply supported. A correlation between results. from
_this program ond the literature is shown. A Program Description Document is also avail-
able for this program. The progrom is developed for NASA, langley Research Center,
under Contract No. NAS1-8858.

Additional documents under this contract are:

(1) Program Method and Usage Document; (2) Program Description Document:
BUCLAP - "A Computer Program for Uniaxial Compressive Buckling Loads of
Orthotropic Lominated Plates.”

(3) Program Method and Usage Document; (4) Program Description Document:
BUCLAS - "A Computer Program for Uniaxial Compressive Buckling Loads of
Orthotropic Laminated Structural Sections."

(5) Analysis Report - "Buckling Analysis for Axially Compressed Flat Plates,
Structural Sections and Stiffened Plates Reinforced with Lominated Composites.

KEY WORDS
BUCKLING T LAMINATES
STIFFENED PLATES ORTHOTROPIC
COMPOSITES - PLATE ELEMENTS
STRUCTURAL SECTIONS SANDWICH PLATES
BUCKLING DISPLACEMENTS EIGENVECTOR
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1.0 SUMMARY

The BUCLASP program has the capability to solve for the critical compressive buckling
load on stiffened plates, e.g. corrugated plotes, integral panels, built up of ortho-
tropic laminated, flat plate elements as well as beam elements. Optionally the pro-
gram will also establish the buckiing displacement pattern for ‘the critical load and
mode. The method used here is the classical approach of minimum energy considera- .
fion. Linearized theory is used. The general othotropic, laminated plate theory that
was derived earlier for the plate program BUCLAP is applied to each plate element of
the cross-section of the stiffened plate in a similar way as for the program for buckling
of structural sections BUCLAS. Full compatibility is satisfied ot the junctions of the
plate elements. Thus the boundary conditions for each plate element will contain
forces and displacements of the adjacent plate elements. "

1.1 Problem Description

This program was originated in connection with NASA Contract No. NAS1-8858. " The
purpose of the computer program is to implement the analytical work .under the same -
contract. '

The objective of this effort is to develop a progrom which computes the axial compres-
sive buckling loads for various composite reinforced stiffened panels. The cross-section

is built up from the required number of flat laminated plate elements and also beam
elements of various shapes. The boundary conditions at the loaded edges of each element
are simply supported, while the boundary conditions at the unloaded sides of the cross-
section can be free, simply supported or clamped. These unloaded sides can also be
supported by beam elements; e.g. lips or beads.

This program is the third in a series of programs for buckling of composites, where the

first program concerns the buckling'loads at plates with various boundary conditions, and
the second involves the solution of buckling loads for structural sections.

1 ..-2 Results

" The numerical results obtained from the progremmed method is correlated with the avail-
able literature for isotropic stiffened panels, for the various boundary conditions. The
effect of assuming certain.plate elements as beam elements is studied.
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° For orthotropic laminated stiffened plates the results available in the literature are

~ limited, but the dota avoilable is checked. Sample coses of isotropic and orthotropic
plates are simulated to run on this program and the results are compared to the re-
sults obtained from the plate program BUCLAP and the sections program BUCLAS (both
developed under this contract) for the same data. '

As can be seen from Section 5.0 the correlation is good.

The functional aspects are tested as shown in Section 5.2.
1.3  Conclusions
The quality of the verification of results (Section 5.0) demonstrates that the theoreti cal

. method is adequate.

1.4 .. Recommendations

The numerical difficulties, inherent in the type of problem solved here, have established
the search strategy for determining the critical load, which Involves finding the zero
crossing of the buckling determinant. The progress of this search depends upon the
magnitude of the starting load and a [oad interval. One property of high order poly-
nomials (i.e. large determinants) is that its roots will be very close together, thus in
certain cases two, or more, zero crossings of the determinant may occur for quite close
buckling loads. Also in certain cases the critical load is very close to a load which
gives double roots when the equilibrium equations are solved. Under conditions like
these, care must be exercised in choosing the starting load and the iteration step size.
If convergence difficulties are encountered, adjustment (decrease) of the load increment
input data normally increases the likelihood of successful solution achievement.

The program has been coded with care so as to minimize the probability for any of these
problems to occur.



2.0 | THEORY

In this section, only those parts and details necessary for the understanding of the

computer program, are given. Full details of the analysis are given in: Viswanathan,
A. V.; Soong, T. C.; and Miller, Jr., R. E.: "Buckling Analysis for Axially Com-
pressed Flat Plates, Structural Sections and Stiffened Plate;r; Reinforced with Laminated

Composites, * prepared for NASA Langley Research Center, by The Boeing Company,
November, 1970. -
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2.1 i Notation
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Axial lengfh of the structure.
Extensional stiffnesses

Area of beam element

Width of beam' element
Bending-stretching coupling stiffnesses
Bending stiffnesses

Modulll of elus-ﬁciiy

Coordinate for the surface of krh lamina (Figure 2.3)

- Distance from neutral plane to the surface of kfh lamina (Figure 2.3)

Moments of inertia of beam element

St. Venant torsion constant

.Coefficients of characteristic équaﬁon (Equation (20))

Number of laminas

Displacement rotios {Equations (21), (22), and (24))
Axial hcllf-wuve‘ number

Moment factors (Equations (33) and (41))

Moments due to buckliﬁg displacements

In=plane shear factors (Equations (34) and (42))

~In—plane force factors (Equations (35) and (43))

In-plane forces due to buckling displacements
External uniaxial compressive load on flat plate elements {Ibs/in.)

Roots of characteristic equation
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-ﬁb | External axial compressfve load on beam elements (Ibs)

Pu' . ‘ A:;iul load in beam elements induced by Buckling displacements.
qil’qwi Tronsvepe shear factors (Equations (32) and (40))
| qyl,_.qz "~ Transverse shear intensity in beam elements

Q Transverse shear in flat plai'e-elemenfs

'QL;],ng,etc. Elements of lamina stiffness matrix

' {RI}, {Rz},lR;} Displacement coefficient matrices

RII'R'I.Z’ ...,R33 Elements of flat plate element equilibrium matrix

Sl](] First element of the lamina complicnce matrix, [Q:‘i]"]

h Thickness of kfh lamina

[Td]’[Tf] : Transformation matrices

Tx | | Torque on beam -element

UV, W Neutral plane displacements of the plate and the center of the

: beam element

X,¥,2 Local coordinates of glements

'[XT]’[xil‘*]’ Matrices for displacements and forces of flat plate and beam
[Xat],[xs*t],etc. elements for inter-element matching.

YorZg, Off=sets

z . Distance to neutral plane of flat plate elements (Figure 2.3)
(r  Matrices |

{1} Column matrix

( )x’ etc, égrx)-' ete.
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8,8 Wave mode _porérheters (Equations (16) and (80))

r - Warping constant of beam element

€. In-plane unit strains

6 Rotation about longitudinal axis

f] to f4 _ Beam element force factor (Equation (83))
ax'.a'y”xy In;-picme stress components

E'-IP Beam element property

v An-gle between global Y and local y axes

MOES .
Displacement factors for flat plate elements. Equations (28) to
(31) and Equations (36) to (39).

T d’wi" Toif Pui .

Superscripts:

+ Side y = +b/2 of flat plate element

- . Side y = -b/2 of flat pléte element

Subscripts:

BG Beam element quanﬂﬂel_s with respect to global axes

BS Beam element quantities with respect to local off-;et axes.
(1),(2), etc. Element numbers

i 'Numl.aering of characteristic eciuaﬂon roots of flat plate elements.
k ' Laming nu‘mberingr

PG Flat plate element quantities with respect to global axes. |
PS Flat plate element quantities with respect to local ﬁff—sef axes.
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2.2  Method

The type of structure, considered is of uniform cross-section and is assembled from
orthotropic laminated flat plate and laminated beam elements. In @ macro-mechanic
sense, the material in each lamina is homogeneous and orthotropic with respect to the
‘axes of the structure. This restriction on orthotropicity can be relaxed, without causing

. serious error under certain conditions, as discussed in Section 2.3.2.

The loading is uniaxial compression. Typical examples of such structures are stiffened
plates, truss core and corrugated core sandwich plates, etc. The method of'“nu'r-hericul
‘solution used precludes any "closed™ structure, where the first and the last elements _
are interconnected as in a polygonal box. However, a closed part can be part of the
whole, ds in hat stiffened plates, truss core sandwich plates, etc. The numerical
method also takes advantage of any repefitive nature of part of the structure (e.g.

repetitive stiffeners in stiffened plates).

~ The intersecting angle between the elements can be arbitrary. The loaded edges of
each element are simply supported. Any unloaded edge of the structure, when not

supported by a beam element can be free, simply supported or clamped.

In the present buckling analysis linear theory is used. The prebuckling deformations
and possible initial imperfections are ignored. The buckling load is defined as the
smallest load at which a part of the structure (local instability) or the whole of the
structure (general instability) starts to develop out-of-plane displacements (w), resuiting

in a state of unstable equilibrium consistent with the given boundary conditions.
A set of buckling displacement functions, automatically satisfying the simply supported

boundary conditions along the loaded edges and having the some axial mode (wave-

length) in all elements, are assumed for each element making up the structure.
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For flat plate elements, the lbuckling displacements assumed are v, v, and w. Sub-
stitution of the displqcem.enf functions into the equilibrium equations for a laminated
flat plote leads to a characteristic equation for each element, which in general is o
polynomial of 8th degree. Cr.;rre5ponding to each level of uniform axial strain in all
elements, there is a set of roots from this characteristic equation, for each flat plate
element. Using these roots, buckling displacements and the corresponding forces a-

fong the unloaded edges of each flat plate element are evaluated.

For beam elements, the buckling displacements assumed in the translations u, v, w,
and the rotation 6 about the longitudinal axis. Applying the theories of bending
and torsion of beams (including axial compression effects} the forces along the beam

due to buckling displacements are determined.

In a structure made up of these elements, for continuity, the corrasponding disp!ace-
ments of adjacent elements should be equal. Similarly, since there are no e,xtérnal
loading ot a junction of elements, for equilibrium, the corresponding forces from adja-
cent elements should be equal and opposite. These enforced continuity and equilibrium
requirements form the boundary conditions along the junctions of elements. Along any
unloaded edge, when not supported by a beam element, the boundary conditions can

correspond to a free, simply supported or clamped edge.

These enforced boundary conditions result in a set of homogeneous simultaneous equa-
‘tions. The buckling load is obtained from these equations by determining the minimum
value of the applied load for which the determinant of the coefficlent matrix becomes
zero. Buckling loads corre;ponding to various modes in the axial direction are evaluated
‘and the minimum determined. The eigenvector giving the buckled shape corresponding to

the minimum buckling load is obtained using inverse iteration technique.
It is important to note that the buckling loads and the corresponding eigen-modes are de;

termined from a general instabllity analysis, in that no restrictions are placed on the

buckling deformation of the cross-section (except that the angles betwsen slements remain
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_unchanged). The eigen-modes are indicative of overall or local nature of instability.
In contrast the classical buckling analysis assumes restricted deformation of the cross-
_section as in flexural (Euler) mode, torsional mode, local mode, etc. Such simplifying

restiictions con sometimes result in missing the lowest buckling load.

Attention is also drawn to the fact that the loaded edge of each element making up

the structure is assumed to be simoly supported. Thus each flat plate element has a
line condition of simple support and each beam element a point condition of simple
support at the loaded edges. Thus for structures of complex cross-sectional shape, the '
overall end conditions in the present analysis will be different compared to the conven-
tional Euler instability theory, where the structure as a wl:ole is idealized to a line
member and simply supported, resulting in a point condifion of simple support at the =
loaded ends. The effect of this will be small when the axial. half-wave length of f

buckling is smadll compared to the length of the structure.
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2.3 ldealization of the Structure under Uniaxial Compression into Elements

This section describes how the structure is idealized as an assemblage of flat plate
‘elements and beam elements. As stated in Section 2.2, the structure is of un'ift:.»rm
cross-section. Figure 2.1 shows the cross-section of a typical arbitrary structure.

Y, Z axes are the globdl axes, the global X-axis being parallel to the longitudinal
axis of the structure. The dashed line represents the outer contour 6f the structure.
The solid line in the interior of the structure is drawn through the mid-plane of each

segment.

o N Local
v~" Reinforcement

®

S ——— e e

FIGURE 2.1. |dealization of Structure into Elements

It is easy to see that the flat sides of the structure are idealized as flat plate elements

and the bead and the local reinforcement as beam elements. The numbers in parenthesis

are the element numbers.
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The intersecfion of the mid-plane lines for adjacent segments is used to identify the
boundaries of individual flat plate elements. These intersections are indicated by the
dots in Figure 2.1, where the dots are also used to identify the geometric center of

the beam elements.

When three or more flat plate elements of differing thicknesses are involved at a junc-
tion (e.g. junction of elements (5), (6), and (7) in Figure 2.1) it is not possible to
have & common intersection of all the mid-planes. In such cases the intersection of

" two or them are chosen while the other flat plate elements are assumed to have ficti-
tious rigid off-sets to the chosen intersection. These off-séts are further discussed in
Section 2.4.4.

The g'eometric centers (beam elements) and the mid-plones (flat plate elements) are
_chosen since. the element junctions can be easily fixed from the geometry alone. No

other spécicll significance ‘is attached to this choice.

The structure of Figure 2.1 can be considered as an assemblage of:

(@} beom elements (3) and (8),
(b) flat plate elements (1), (2), (4), (5), (), and (7).

Any other structure of uniform cross=section can be idealized in a similar manner.
Figure 2.2 shows a hat stiffened plate, with the element numbers shown in parenthesis.
Attention is drawn to element number (2) which is a typical flat plate elerﬁent, formed
in this case by part of the skin and the attached flange. This idealization which is

used in the present program, is correct when the stiffeners are bonded to the skin.

When stiffeners are rivetted to the skin this idealization over-estimates the bending stiff-

ness of such elements.
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FIGURE 2.2. ldealization of & Hat Stiffened Plate into Elemenis

It is possible to idealize each complete stiffener in a stiffened plate as a beam element,
using the appropriate beam properties, discussed in Section 2.5.1 and 2.5.2, Since the
‘beam elements have a point simple support condition at the loaded ends and the flat
plate elements have a line condition of simple support along the loaded edges, the
 idealization of each complete stiffener as a beam element will result in different overall
end conditions for the stiffened plate. This may result in differing buckling Ioocf:lrs.
Further, when the stiffeners are of thin plate ,c.onstrucfion (e.g. hats, zees, etc.), the
instability analysis based on the beam idealization of each complete stiffener,. naturally

will not cover focal instability of any part of the sHffener.

In the buckling analysis, the element displacements and forces {(due to buckling displace~
ments) satisfy conditions of inter-element confinuity and equilibrium, together with any
other specified boundary conditions along the unloaded edges not supported by a beam

element.
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2.4 Flat Plcﬁe Element

Any flat part or side of the structure under uniaxial compression, which behaves as a
plate is defined here as a flat plate element. The flat plate element is of constant
thickness and is, in general, laminated. As stated earlier each lamina is orthofropic 7
with reference fo the axes of the structure. This restriction on orthotropicity can be
relaxed without .ccusing serious error under certain conditions, as discussed in Section
2.4.2, The basic equations of the flat plate element are given in the following sub~

- sections,

2.4.1 Material and Geometry Constants for a Flat Plate Element

For a lamina of orthotropic material, the matrix Q relates stress and strain in the fol-

lowing manner:

ety o W
or
kY [k k A
[‘x Q@ 0 1
k L _| Ak k : 2
19 [F[%2 % 0 ffe ¢ . @)
k k |
n::o'xy_J __ 0 0 Qéé_ . xy_J

where k denotes lamina number.
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The Q-matrix for a lamina depends on the material properties of the lamina,

En

Q.. =
n T
2 (1~ v2lv|2T
3
o - ntu iy
12 0=y (1= gy
Qs = C12

Note that x, Yy, and z oxes are assumed to be identical with directions 1, 2,

and 3 + respectively.

The quantity z locates a neutral plane relative - to - the reference

plane chosen at either one of the outer surfaces of the flat plate element. * This
‘neutral plane is fixed by locating the resultant: of . the vilaxial force in
the layers for a uniform strain across the thickness. Whenever the matrix {B] = 0
{coupling stiffness, see page 2.14), with respect to this reutral plane, there is no
coupling between bending and stretching (for instance, an isotropic or a symmetri-

cally laminated flat plate element).

The expression for z s

T
i ;?i 25 1 T

/S
. _ e k711

where SI;I is the first element of lQ]-l for layer number k. I



reference

plane z
. 1, x n
neutral h hk
“plane k
kth lamina i

'3,:

Figure 2.3.

Flat Plate Element: Laminate Geor’net:y

©2.4.2 Overa!l Stiffnesses of a Flat Plate Element

The Q-matrix mentioned above (Equations 2 and 3) represents the stiffress matrix

for each lamina.

element as a whole are needed.

In the actual calculations, the stiffnesses of the flat plate

In the following, the extensional stiffness, coupling stiffness and bending stiffness

for the flat plate element are denoted by the A-matrix, B-matrix, and D-matrix,

respectively.

Using linear theory, the strain at any point across the thickness in terms of the

~displacements, is written as:

€
x

Y.

Y,

(V)

)

Uxy

b

"X

4

ey

+v

' X

—d

-z w

where z = distance from point to neutral plane

u, v, and w are the displacements of the neutral plane.

(5)
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Thus the stresses {c}‘due to any displacements u, v, and w ot any point, can be

calculated using Equations (5} and (2).

The stresses and their moments can be

“integrated across the thickness to establish the force and moment resultants on the -

differential element.

The integration yields:

F

N

1 N2

11

N” = [o‘xdz

’N22 = _[ a’ydz

N12 - [ ‘xydz

AN

AIZ

0

—

L

1

12

12

22

12

22

My,

12

U

%

A" p =
4 Y

u +v
Y X
A - F
4 h
u

X
{v p -
3 4

u 'fv '
Y X

[
1
1[6’ -z « d»
2
f ‘x z * dz
t >
By B,
Big By
0 0
ST
Dy Dy
0 0

(6)
— r
0
) XX
0. ) o
LYY
66 zw,xy
— \ P
—f h
Olgw
§ XX
0 llw
'Yy
66 zw,xy
= L

where the A, ‘B, and D coefficient matrices define the extensional, coupling and

bending stiffnesses, respectively, of the laminated orthotropic flat plate element.
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The elements of the A, B, and D matrices are given by:

Aii_=é CHEEE | ®

-.] i | |

B =3 & @ik oy +h) - (o)
_ '| i ‘ . '2 : 1 ' 12 .

%73 Gk Cen Then TR TR e o

In the above expressions, k is the lamina number, ﬂ is the total number of laminas.

h;(-is:the distance from the neutral plane to the surface of the respective lamina

(hy = by = z)-

Equations (2), (7}, and (8) are based on the assumption that the material orthotropic
axes coincide with the lamina axes. Boron fiber reinforced composite lominas with
fibers at 0° or 90° are typical examples. . When the fibers are at any other angle,
éach lomina, though orthotropic with respect to the fiber direction, is anisotropic with
respect to the lamine axes. Qii are then replaced by their transformed values c':'ii (see
for example: Ashton, J. E.; Halpin, J. C.; Petit, P. E.: *Primer on Composite
_Mutefials, " Technomic Publication, 1969, Equation (2-35)), resulting in the matrices

: [Q],l [Al, {Bl, and [D] in Equations (1), (7), and (8) being fully populated. However,
for a mid-plane symmetric laminate composed of a large number of layers the "16" and

"26" terms in these matrices are either zero or small and can be ignored.
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- 2.4.3 Equations: For' a Flﬁf Plate Element

" The forces acting on a differential element of the flat plate element are shown
in Figure 2.4,

12
Np
———
2,y :

Figure 2.4. Forces on a Differential Element of the *Flat Plate Element®

Using variational principles, the three differential equations of equilibrium are
obtained as:

oN d

N : :
1 12 _ 1 B
Ty T 12
oN,, +3N]2 Co _ ‘ a3
oy Ix. : . .
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2 2 : |
SMy IMy o My . .

Z T TSy TN | (H4)
d7x dy 4 ' '

~ These equations can be expressed in terms of displacements using the relationship:

INF = (AR} + (Bife) I
{M} = [BI{e°} + [DI{«} N - - Q19)

o . _ ) o
where {¢'} and {«} refer to strains and curvatures in the neutral reference plone.

The following, general buckling displacement functions are assumed for the flat

plate element:

v=2=% Vi sin é - ea, | (16)

where
é = myEx
a
xP.Y
_"F
A= a

Flgure 2.5/shows the ghométry ‘of the ‘Bat: plite element: - Thaix<y plase colncides
Wiflf'rioutrulvj pluiie_-“of;:ﬂu plate.. (Equatfon:{(4)}¢ - -~ - . .

These functions automatically satisfy the simply supported boundery condittons along
the edges x =0 or x = a, where the extemal applied load acts.
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Figure 2.5. Flat Plate Element

On substituting the displacement functions assumed, the equilibrium equations

reduce tfo:
R | R xR, ru-«
1 12 13 |
Ry eyl {V =0 07
R Ry Ry W
. J

A nontrivial solution is obtained from:

Ri Rz Ryg

|DT|= R Ry Ryl =0 | (18)
R Ry Ry |
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7 _'wheré .

o m2 P 2
Rip =-AnG A4
R =(A'+A).(E'_).(f.i.)
12 12 66 a a

_ m,3 _ m Pi.2
Rig = By - (B +28,) - @X)°

Rhy = -R

2] 12 -
| (19)
R =A'.(E)2-A .(."_‘)2 |
22 22 a 66 ‘a
L m2 P P; 3
Roa ™ Big * 2 - BelG) - () - Byl
Ra1 = Ris
R32 = Ry
2 | Pio . Pig
-, .m md m2."i,2 o Lind
Raa "N T2z PPN B0 MGG Dy - D)
The‘deterrnilnant DT of Equation (18) when expanded will yield an 8th order
| ~ polynomial in pi‘ containing only even powers of P; i.e.
8 6 4 2 _ | B
KgP; * KePi *Kypp *Kopp *Kg =0 | (20)
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- Thus IDTI = 0, when solved yields eight values of pi,- which are real or
complex. When complex, they always appear as conjugate pairs. Using these
P; values in Equdtions (16), it is seen that the displacement functions satisfy the

equilibrium equations of the flat plate element.

Also, through Equations (17), Ui and Vi in Equations {16) can be éxpresﬁed in

terms of Wi as:

U = TLW, ' | 21)
Vi = L% ' | (22)
whare
< T el T 8 210}
TRy Ry < Ry Ry |
_ and . ' ‘
L Rzt Ryp - Ry o Ry

L . (220)
2 Ryt Ry = Ry v Ry ‘

It may be noted that when Bii =0 (i.e., no coupling between bending and
stretching) the equilibrium Equations (12) and (13) contain only u ond v terms
ond the Equation (14) contains only w terms. Thus, for this case u and v are
independent of w. Instead of a single Bth order éolynomial , Equation (20), one
thus has: | |

(a) o separate fourth order polynomial in Pui resulting from’
| R | | -

21 R
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(b)

The -pui ~values are to be used for the displacements u and. v of

Eqdati_o’n (16}, the summation extending from 1 to 4.

One can also express Vi' in terms of Ui as
i

Vi T LY | - (24)
where
Ry Ry B
Ly, === = -2— (241,
! 12 22

another fourth order polynomial in Poi resulting from

|DTW|= Ry =0 - - (25'

- The Pui values are to be used for the displacement w of Equation (16),

the summation extending from 1 to 4.

Using of these Pyi and Pui valves, thus satisfies the respective equilibrium

equations of the flat plate element when Bii = 0.

For a given level of axial load, I‘—d” Ib/in., in the flat plate element, the

buckling displacements and the corresponding forces at any point in the neutral

plane can now be readily calculated from Equations (16) and (15). When Bii A0,

the ‘pi values from Equation (18) are used. When Bii =0, the Pui values from

Equation (23) are used in u and v displacements and the Poi values from Equaﬁon-

(25) are used in the w displacement.

.
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2.4.4  Forces and Dispfdcemenrs of Flat Plate Elements

In the buckling analysis the inter-element continuity and equilibrium are enforced along
the junction line between the elements. These lines are in general off-set from the
neutral plane and parallel to the longitudinal axis of the flat plate element. In this
‘s‘ect_ion the dis;:lacem_enfs and forces involved along fhe two sides of the flat plate
element are considered in detail. They are initially derived with reference to the
local coordinates in the neutral plane, from the. equations given in Section 2.4.3. See
Figure 2.6. They are then transferred to the off-set junction line. Finally they are

transformed to the chosen global axes system,

The flat plate element displacements involved are:

w, w o, 26
)Y U, v ( )

The plate element forces involved are:

IM,, a"‘."12 |
Q=( 5 253 ) My Nig Ny 27)

Figure 2.6 shows these displacements and forces in the neutral plane along the side

y = +b/2 of the flat plate element.

The forces in Equation (27), can be expressed in terms of the assumed buckling dis-

placements through Equations (7), (8), and (14).
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1, 1,
. v - Nj2

. w : Q
_ 5 '
2, 9 = ,
K.- y w’y AZ y
S * E ‘ E

3,z , ' 3,z

/ //——b—7/ //—b-_/

FIGURE 2.6. Flat Plate Element Displacements and Forces
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When : .Bii A0 (i-t.e. ‘ there is coupling between bending and sfréh:hing): all the
quantities can be expressed in terms of Wi (i =1 to 8) through Equations (21)
and (22). Also involved are the eight P values obtained from Equation (18).
Whlen Bii = 0‘7r (i.e. no coupiing), as stated in Section 2.3.3, the v and v
| displacements are independent of w. In this case Vi can be expressed in
terms of Ui' See Equation (24). Thus oll the quantities can be expressed in
terms of Ui and Wi (i =1 to 4). Also involved are the four Pyi values

obtained from Equation (23) and the four Pui . values obtained from Equation (25).

Finally, the displacemenﬁ and forces involved in Equations (26) and (27) can be

written as below:

CASE 1. Bii # 0

é = mux
a
8=

8 8 ,
w=2X W sind - eﬁ =z wi‘_Ni sin § (28)
i= i=1 '

8 rpi . ﬁ 8
w'y = ii Wi . - sm.J e” = ii]. ¢|Wi sin 0 (29)_
8 I - _ : N :
U= E W Tl cosd ef = £ nW coss (30)
= ! ! i= !
8 8 _ ‘
v=1L Wi R I..li sind eﬁ = L piWi siné : (34)
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s "o Ly Byl ("') + °12("’
i3 g @Dy am2 .
66" a a 2i s I|)

Z qW sin § o ' ' : - {32)

' P, P:ogy
- ¥ 1. m ik m.2 i2)
. [_{ Blag c by * By g by +0 @ - D)

r2 i o8 gn sl
(mz.",)iwi sin & ' | - (33)
P,
| [{A“(El Ly + = Ly) - 2B, ' E} W, -x2 - o8« cos 4]
= z‘ (n 2)w cos § | | | | 34)
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) Com ; m2 o P2y
'*_'22“}:[{'”‘123 Ly * A5 Ly *+ B, - B’}

i:] S ‘ .

= iE] (“22);“’; sin 4 ‘ (35)

The quantities defined by w., é. Toe P 9 (m22)i' ("]2)i'

and (n

). are self evident from the above equations (B, # 0).
22°i ' t]
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CASE 1. Bii =0

j =Mmrx
a
P .Y
_ i
ﬂl " T a
) -priy
‘82 T T a
4 By 4 - |
w=L W sinde =ZXau.W sind : {36)
e o W s
w =X W ¥ siné e 2% ¢ W.sin (37
’ i< a . i= wil 1 . .
4 By 4 '
v=L1 U cosd e =1L My cosd (38)
i= i=1
4 & 4 -
v=% U sind e =X p . Usind : _ - {39)
=l .L3i ' =1 U ‘
Q = ; [{”D « 2.(?1"’_1_)..0 (E.‘l’.i_)a +4D (2)2 f_“!!.} W - xS ind)
21 123) Ya 22Va’ "7 6ba’ “a ; *€  csin
4 | - |
=L q,Wsiné : | | (40)
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&22 = .'L=.] [{DIZ(G) .22 a
4 '
=L (my,) Wsin$ ' (41)
i= -
4 P . ﬂ]
i u .o m .
le ——itt {{Aéé(a. +c L3i)}ui T e cos 4]
4 ' | |
= L (n]2)uiui cos & - (42)
i:
4 P By
_ m ui
Na2 x f-App 3 + Ay - "3| }U. *e sind)
4 |
= . H ' . C- ! 4
il;] (nzz)u.',Ui sin 8 _ - 43)

The quantities defined by @ ¢wi’ it Pui’ wi’ (m22)w}‘ .(n]Z)ui’ and

(n22)ui are self-evident from the above equations (B” 0).

Putting y .= tb/2 In the above equations yield the displacements and forces along the
two sides of the flat plate element, with reference to the local axes and in the neutral
plone. The element width to be used in calculating these displacements and forces is

evident from the idealization of the structure into elements, as discussed in Section 2.3.
The above displacements and forces are now transferred to the inter~element junction

line, which in general Is off-set from the neuvtral plane. This transformation is purely

a geometrical, ng‘id—body transfer.
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,
Let y . z be the off-sets to this line measured positive in the positive directions of

y ond z axis, from the sides (y = +b/2 or y = ~b/2) of the flat plate element.

These off-séfs as defined above are measured from the neutral plane, as shown in
Figure 2.7. Since the neutral plane is not initially known, the program input off-set
in the z direction is measured from the "top surface” of the flat plate element. The
“top surface” is the outer surface of the flat plate element on the negative z axis

side. The program then internally calculates the true off-set z .

Neutral
fane

FIGURE 2.7. Off-Sets on Flat Plate Elements
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" A subscript 's' is used-to designate the quantities with respect to the off-set axis.

The displacements with respect to the off-set axis are then given by:

w =w + W
. Yo

s 'Y
8 =w = w - ' :
5 5., . Y . _ (44)
vV TS v -2 W
5 o ,¥
gy = - W -
v =u-z x yov’x

The forces with respect to the same off-set axis are given-by:
Wygl =My +y,Q = 2 Ny,
'(Q)'S; = .- %o NI?,x

(Ny2) =Ny,

Npg)y = Noyg =y i N2«

- (45)

All the quantities in Equations (44) and (45) are defined by Equations (28)."fo
(35) when Bii)éO and by Equations . (36) to (43} when B;j =0, except u y !

w _, and N . These are readily obtained cfter appropriate differentiation of
, 12, 4 p

u, w, and Nyo- Thus when aii;éo:

= % W-rL((lm") osé eﬂ- = )83 w(i-n‘l') P, cosd
R T R A = '
44
8 8 8 “é)
= L] .m-I . =’ . “
¥ o ;El‘w‘ | (a )rTos& e iEl ; (-L%;) w, cosd
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8 o
= - . . --'- - Ln_ - 1 ‘nl
le,x iE] v [{Aéé(ﬂ by T o L) 2By 7 ' 5 } i
) 727' ('TI'-) sind - eﬁ]
- (d6)
8 mw
Tk N R sind
and when‘Bii =0
4 - B, 4
= _.._m' T _ m¥
Y ii:] Ly U, (=) cosd e _if U, P, cos 8.
, P
W TEWED coss el =X W ET) 0y cord
! i=l i= )
P 47)
4 .
PV, ﬂ
=-Z —1 +2. LmEy e
le,x 52;1 Ui[{Aéé( a t= Lsi’}' (B ) sing - e ]

4
==%

mx .
il U, 6570y ,) qsin é

"After making the above substitutions, Equation {44), giving. the displacements of the flat

plate element with respect to the off-set axis becomes:

(CI) When B'i ﬁ 0

-8
w, = ;i] G.,‘ + Yo¢l)wi sinéd
8 : . : .
8, = w = ¢ W, sind - (48
s s,y 1=1 P . . | )
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v = X (ﬂi - zod'i)wi sind

5=l
(48)
8 mT mw
v, = ;E]hi -z ), - yo(_;::h—)"pilwi cos b
“or, written in matrix form,
[ w ) [ ] rW ]
s 1
5 X] : . :
Joo ! }:d @
v 4 x 8 .
$
L Us p b - I-.WB p
i.e.,
{dph = IX,}{R,} | (50)
where 'dPS} and lRl' are self-evident.
(b) When Bii =0
4
ws - i}il (“wi +yo¢wi)wi sin 8
N 4
= = E . *
b =Yy T E fwiVi 8 51)
.4
Vs - iZ:] (puiui - zo"""wiWi)sm‘s
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‘ me.,
us ?] [n U -z (—)w w, -yo(—;—)PuiUil;osé ~{51)
Or, written in matrix form,

r - 1T

ws .Vf’]
9 X\ ' | - |
4 s b . ! _ < W4 4 7 , (52)
v {4 x 8) U}
»..USA L - LU4 y
i.e.,
- . . . _
{dpsi - [X] ]‘R] ' _ ' , (53)

where lR]*l fs self~evident.

In a similar manner Equation (45) giving the forces of the flat plate element with re=

spect to the off-set axis becomes:

{a) When By F#0

8

(M22)5 = ii] [(mzz)i + )foqi - zo(n22)ilwi sin5
8
(Q)s = % [q +z (n]2)( )]W sind
| i=1
| (54)

, 8 .
(le) 'El (nu)iW cos d
(N >=‘3 (o) *+y_(n) Co=)IW, sin §

22)y 7 = agh Yol S sin
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Or, written in matrix form,

ro Y - ' 1T ¢
(M), _ W,
Q - X :
R B 2 {: ¢ (55)
(N]Z)s 4 x8 .
M(sz)s-d ' e | . stJ
i.e.,
{fos} = DX)R, ) o o (56)
where 'fpsl is self-evident.
- (b) When B‘i =
4
Y22 = iil UmaphuiWi * Yoty = ZolmgyVyling
4
(Q)s = ¥ [q W +z (n 2) ( )U Isin &
1= - | | (57)
4 ‘ .
Ny, = 2 (n9);Y; cos 8
=
4 | mT '
(N2£s=lzllm2£ +y°mlﬁu#1rﬂuimn6

Or, written in matrix form:
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(M22) ) [ | 1( Wi )
* < | % 1Val | ' (58)
) “ x 8) u,
[Ny ) | RS
Pe.,
{fos b= RS | | (59)

Thus, when B, # 0, Equations (50) and (56) and when B, =0, Equations (53) and (59)
give the displacements and forces of the flat plate element along the off-set axis

{Figure 2.7) and with respect to the off-set local axes, X Yo and z . Since thq
angle between the elements is arbitrary, it is convenient to transform these to a global
coordinate system so that consistent displacements and forces can be matched for con-
tinvity and equilibrium. Figure 2.8 shows the neutral plane AB of a flat plate element.
For clarity the local x axis in the neutral plane and the parallel x, axis ot the off-set
points are not shown. X, Y, Z are the globa! axes. ¥ is the ungle measured positive

in the clockwise direction from the global Y axis to the local y axis.
{

(M, ) Xi vgr (Nygg

\\ 4o
= Yo vgr (Nplg
v
A(y=b/2) 0
A4 7:0
zZ,W Zo " B(yA+h/2)
\ 1, o Ys
e B e Y6 I T

FIGURE 2.8. Global Coordinate System for Flat Plate Elements
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Subscript G is us'ed'to'idenﬁfy the quontities referred to the: global axes. Their

positive directions are os indicated in Figure 2.8,

The four displacements of Equation (44) on transformation to the global axes become:

| rwc_: | [ cos ¥ | 0 siny 0 rw:
1 o - 0 1 0 0 j o, ’ | -
e -sin ¥ | 0 cosyy O \A
L,UGJ I 0 0 0 1 } ;,USJ
“Or, written in contracted form:
{dpt = [Tgldpsl | | (61)

In the following superscripts + and - are used with the various matrix and vector
designations to differentiate the corresponding quantities along the sides y = +b/2

and y = - b/2, respectively. For the side y = +b/2, thus, |d '[X]], etc.,

. ral-
are designated 'dPG }, [X]"'], etc. Similarly, {dPG"', [X]'], etc., refer to the

side y = - b/2,
When Bii # 0, substitution of Equation (50} in Equation (61) yields:

ldpg*) = (101X, 1R }
= [X;,*R

(y = +b/2) o (62)

|‘dPG“'l = [TJIX,7I{R.}

= [X57{R,}

]

v =-b/2) - - (63)
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Similarly when Bii' = 0, substitution of Equation (53) in Equation (61) yields:

fdogth= [T "R "}

. . y = +b/2)
= [x3 ﬂ{R] }

fdo e b= 10X, 1R

. y =-b/2)
= X, {R,*}

(64)

(63)

In a similar manner, the forces in the local coordinates given by Equation (56) when

Bii 7# 0 and by Equation (59) when Bii = 0, can be transformed to the global axes.

Thus, when Bii # 0:

Afeth= (06, 1R b

y = +b/2)
=[x, }{R, } |
{f. =} = T IX,"HR, }
re rz o (v = - b/2)
= X, 1R, } :
~and when Bil; = 0
{r__*}=1100x," "R, "} |
PG f*+2 ! 1 by = +b/2)
= X, R}
{6, =} = T, 1R, *} 5
PG PRy TRy o =-b/2)

= [x4*']{nl*}

(66)

(67)

(68)

(69)
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In the above equations:

(M22)G
1 .
ffeb=41 ¢ 1 | (70)
(Ny9)g S
| (Npo)g |
and
1 o o o |
_10 v 0 iny _
[Tf] =1 cOos sin 71)
0 0 1 0
_0 ~sin ¢ 0 cos ¥ J

Also, [-Tf] indicotes the transformation matrix [TFJ' (Equation (7?)), with the signs of
all elements reversedd. This is necessitated by the sign convention used for the flat
plate element forces in the local coordinates, (see Figure 2.4), where the positive

forces along the side y = +b/2 have directions oppesite to the positive forces dlnng
the side y = -b/2.-

When Bii # 0, Equations (62), (63), (66), and (67) give the displdcemgnts and forces
of the flat plate element along the off-set axis, with respect to the global axes. When
Bii =0, -these are given by Equations (64), (65), (68), and (69). All "' matrices in

these equations are 4 x 8 in size.
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2.5 Beom Element

Any straight prismatic component of the structure under uniaxial compression, which be-
haves os a beam is defined here as a beam element. Typical examples are tumps of
boron fiber reinforcements between stiffeners in stiffened plates, beads or lips or stiffeners,

corner fillets of extended stiffeners, etc.. See Figure 2.9.

2.5.1 Material and Geometry Constants for o Beam Element

Beam elements can in general be layered. Figure 2.10 shows the geometry of two

particular types which are treated in some detail in the next section.

For each layer the basic materml properties involved are EII(], (the Youngs Modulus in

the oxial direction) and G23 (the Shear Modulus).
In the case of the rectangular beam all layers are assumed to have the sumq. depth

b'. The origin of the axes system is for convenience taken at the geometric center

of the bead or flange.
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bead lip corner fillets

N

e

Lumps of boron reinforcement between stiffeners

FIGURE 2.9.  Typical Examples of Beam ldealization

k o

: -

° -
: b

2,y 2:?
layer No. k A |
¥ layer No. k
| 3,2z 3z |

FIGURE 2.10. Circular and Rectongular Layered Beams
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2.5.2 Overall Stiffness of a Beam Element

In order to evaluate the forces in the beam element (see Section 2.5.3), the over-
all stiffnesses (bending stiffness, torsion stiffness, etc.) cre needed. With the ex-
_ception of the St. Venant torsional stiffness (stJ) of the layered flange, these

are approximated by the sum of the individual layer stiffnesses. Thus:

Q k
EnAy = EnAy (72)
Egl = g E';I[k
k=1
S
7l =% K
P k=

F'k is the compressive stress in the kth layer caused by the external loading, the
axial strain over the entire cross-section of the structure under consideration being

constant. See Section 2.8.

:F0|- the particular types of layered beams shown in Figure 2.10, the various geometric
properties involved in Equation (72) are detailed in Table 2.1. It is readily seen
that when all the layers of the rectangular beam are horizontal (vertical layers are
shown In Figure 2.10) it is sufficient to interchange I:z and II;Y in Equation (72).
The St. Verant torsional stiffness (GzaJ)_of the layered circular beam is approximated
by:
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TABLE 2.1. Geometric Constants for Circular and Rectangular Layered Beams

Geometric Property : -
of kth Laver Circular Beam Rectangular Beam

Area: : _
: k k.2 k.2 k k

Ay |l T {(fo) - () } bt
Moment of inertias:

k, k.3 k k
k xf kd  kd b (t") k ky t
2 I{_('o) - ) } e v Ab[{(.kz-—-li V-3 } B
| g K
k=1 } ]2

| \ L

Ik I R . __ *k (bk)3

44 7
“Polar Moment of
Inertia;

lk ----- S Ilc + lk ,

P | |2z yy

i
Warping Constant:
.k : . 1 kk3 .,
r .0 | 577y bt7) *

**Argyris, J. H., and Dunne, P. C., "Handbook of Aeronautics No. 1: Structural
- Principles and Data, Part 2," p. 122 and 126, Fourth Edition, The New Era Pub-

lishing Co., London.
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where 7 ' , (73)

For layered réctangular beams an overdll Gos vdlue -is evaludted frém :the individual
luyer Ggs wvalves as; ' '

G,, = . | 74)

The overall torsional stiffness (323.1 is then approximated using J based on overall

dimensions of the flange. Thus,

b | | ' | -
J_-T—[—--aséb- {1--—(3)}1 - {75)

(NOTE: When t/b > 1 interchange t and b.)

where

**Argyris, J. H., and Dunne, P. C., "Handbook of Aeronautics No. I
Structural Prmcnples ond Data, Part 2," pps. 122 and 126, Fourth Edition,
The New Era Pubhshlng Co., l.ondon
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2.5.3 Equations for o Beam Element

The basic equations for bending of beams and torsion of beams, including the
effect of axial compression, are used to calculate the forces, due to buckling dis~
placements, .along the:length of the besm -element. These displacements and forces

are shown in Figures. 2,11 and 2.12.

The equations given in this section for forces, are with respect to the geometric

center of the beam element.

The total applied end load .Fb in the Iayered:‘beam"élemén_f“:is".given by:

£ - | -

/ Lix,v

2,y,v

2

Figure 2.11. Displacements of Beam Element . -

3,z,w
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3,1.

q - Lateral Shear/unit length
1,x

3,z 3,z
dT | | & .
-a-;? - Torque/unit length _ -35- - Variation of End Load

(End Load due to u)

Figure 2.12. Forces on Beam Element
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Thc_z expressi.ons for the vertical shécr q, and the lateral shear "qy (see

~ Figure 2.12) are ‘obfuine;l from beam theory (shear effects ignored). Refer:
Timoshenko, S. P., Gere, J. M., "Theory of Elastic Stability, " McGraw-
Hill, 2nd Edition, 1961, p. 2. :

4 2
q =E,. I dw_'_-r;.dw
z 1 yy? b ;:.’2-
| | (77)
g =E -:"'4"4'5-&
2 | e R S
x dx

The expression for the torque de/dx is obtained from torsion theory of beams,
including warping effects. Refer: Argyris, J. H., Dunne, P. C., Hondbook of
Aeronautics No. 1:  Structural Principles and Data, Part II, New Era Publishing

- Co., London, 4th Edition, p. 140.

d1 4 2 2

x .d 6 de _, 49 .
e = (BT — - G J—+t 5l —5) . (78)
dx | 1 x4 23 dx2 - p dxz _

d

8 is the twist of the beam element. For a circular beam, the first and the last
terms on the right=hand side of Equation (78) are zero. For a rectangular beam
the effect of these terms are small. However, they are retained as the program
has the capability to allow for any type of beam, by giving ', J, and |p
as inputs.

Axial displacement {u), of the beam element, caused by the buckling deformation
gives rise to end load Pu. The rate of change of this end load is given by:

dP, 2 |
-3 R ew SN - ' @9
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The following, general buckling displacement functions are assumed for the beam element:
w =W sind

v =Visind

(80)
v =Ucos §

]
It

_Osin

These functions automatically satisfy the simbly supported boundary conditions

along the edges x =0 or a, where the external applied load acts.
For a given level of axial load, Pb’ in the beam element, the forces (Figure 2.12) ~

due to the buckling displacements of Equation (80) can be readily calculated from

- Equations (77) to (79). These forces are with respect to the local axes, x, Y: Z.

2.5.4 Forces and Displacements of Beam Elements

In this section the forces in the beam elements due to the buckling displacements of
Equation (80) are initially evaluated at the geometric center with respect to the local

‘axes. See Figure 2.12.
As for the flat plate elements in Section 2.4.4, these displaceménts'.qnd forces to be

used for inter-element continuity and equilibrium, are then transferred to an off-set

axis, before finally transforming them to the global axes system.
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- The beom element displacements involved are:

w, e, v, V¥ (81)

The beam element forces involved are:

de l‘JPu
Yoo Y ._ B

Equations (77), (78), and (79) of Section 2.5.3 give the forces referred to an
axes system ot the geometric center of beam element section. The displacements

are also referred to the same axes. See Figures 2.,"!1"ahd‘2:}5712.‘

By substitution, all quantities are expressed in terms of the displacements,

Equation (80). Thus, from Equations {77) to (79):

: _ mrd = mw2 .. - .
qz—[E” 'W(T) -Pb,(_u_)] W - siné Wf]st

| qy = {E” Izz (.'101)4 - Fb' (L-“a-"r—)2 'V «sind =V fisiné
{83)

dT L
X .mr 4 mwr 2 mwx,2 . _ .
qx— = [E.”[ (—a—) + GI? J ("‘a—) "V o IP (—a"") ] « O sin 6 = efz sin d ‘

9P, mr 2 » ‘l
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In satisfying the inter-element considerafions, it is necessary to appropriately
transfer these beam element forces and displacements to the line (parallel to

x-axis) along which compatibility is enforced.

Let, the off-sets to this line measured positive in the positive directions from

the origin of the beam element be Y, and 2 See Figure 2.13,

/ off-set axis

Figure 2.13. Beom Element Off-Sets
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Using the subscript s’ to denote the quantities with respect to the shifted axes system,

the displacements of the beam element become:

w=w+yo'9

85=¢9 .
: : | | (84)

vs=v-z° L]

us=u-z° w'x~y° v,x

After substitution from Equation (80), the above equations become:

- ™ - . ) - .
‘ ws 0 0 s5in 6 yo s,na rU

6 0 0 0 sin & Y]

e 85
i | {11 e

M 0 sin & 0 -z sind W

s “o

mw¥ l mw

-y | cosd [—yc(—;—)cos;él [-zo(-;—)cosa] 0 | kg )

Or, written in a contracted form:
{dgs} = IX R} ‘ : (86)
whére [XS] is a 4 x 4 matrix.

Similarly, the forces on the beam element are transferred to the off-set axes as:

dT dT
x x

S Ty %9,
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dpP dP
(_..L.’.) = _._U
dx’s dx

On substitution from (83) the above equations become:

Or, written in the contracted form:

{fBS} = [xélinz}

[-yoflsin 8l

(a1 Y T
(Tx_ S 0 | [zof4sm 3]
(qz)s . [-2053(264'—)sin5] 0
4 4
dpP
u
(—&-s {£3cos 5] 0
‘(qy)s J '_[-yoga(i"a-'-)sinal [£sin 3] |

(87)
[Ezsin Jl- [ U )
0 A2
! | (88)
0 w
0 o
-l . F
(89)

| [X6] is a 4 x 4 matrix ond its elements are functions of the external load Pb on the

beam element.

Equations (86) and (89) give the displacements and forces of thé beam element with

respect to the local axes X Yor Z (Figure 2.13). Their positive directions are the

same as those shown in Figure 2.12.
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As done for the flat plate elemerﬁ, in Section 2.4.4, these displacements and forces
are now transformed to the global axes. - The positive directions of displacements and
forces with respect to the global axes are the same as in Figure 2.8, where the angle
¥, is now the angle between the global Y axis and the local y axis of the beam ele-

ment, measured positive in the clockwise direction.

Using subscript G to denote the quantities with respect to the global axes, the beam

element displacements given by Equation (BS) are transformed os:

{dggt = (T Hdpe b = [T IX R, } < (X, R,} . (90)
where
r Y
e
] |
1_ )%
{dBG,. = 4 y p (9])
G | |
V6 )

The transformation matrix [Td] is the same as fn Equation (61). [X7] is a4 x 4 matrix.

In a similar manner the beam element forces given by Equation (89) are transformed to

the global axes as:

{faq b= Tdd Y = TR, } = (XgI{R, } | C 92
where

r 3
Mool |
Q |

_{fBG}= ‘_ G p ‘ (93)
Nyodg |
‘(N22)GJ :
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The transformation matrix [Tf] is the same as in Equation (71)- [Xsl is a 4 x 4 matrix.

Thus Equations (90) and (92) give the displacements and forces of beam efements along

the off-set axis, with respect to the global axes.
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2.6 Inter-Element Displacement Continuity and Force Equilibrium

In this section, the displacements and forces of the flat plate and beam elements de-
rived in Section 2.4.4 and 2.5.4, with respect to the global axes, care used to iHus-~

trate the principle of enforcing inter-element continuity and equilibrium.

Figure 2.14 shows a typical junction of three flat plate elements (1), (3), and (4)

and a beam element (2). The dashed line is the outer contour of each element. The
neutral plane of each element is indicated by the continuous line. Point B is the geometric
center of the beam element. The angle ¥ is measured positive in the clockwise direction

from the global Y axis to the local y axis of each element.

X, UGI (N ]2)G

/3 Mool
G > Y, v {N
4 GI

)v

22)6

Z, w

G’ G

FIGURE 2.14. A Typical Junction of Elements
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For the purpose of illustration, the axial line through B is chosen for enforcing inter-

element continuity and equilibrium.

In the program, whenever beam elements are encountered the identical line through

the beam element is chosen for inter-element matching, thereby having to input only

the off-sets for the flat plate elements.

Table 2.2 shows the forces and displacements involved in the inter-element matching

and the corresponding equation numbers, for the typical junction shown in Figure 2.14.

" Since there are no external loads or constraints at the junction, the force equilifrium

~at B yields:

{tos ty + tacha) * s ha) * teg Hg) =

and inter-element continuity yields:

{doc by = Hacha) =196 sy = 19pe

Consequently the beam element has zero off-sets.

0

1

(94)

(93)

The subscripts (1), (2), (3), and (4) denote the element numbers as shown in Figure

2.14. Using the equations shown in Table 2.2, Equations (94) and (95) can be wréﬂen

in matrix form, assuming Bii 7 0 for all flat plate elements, as:

i X,y (Xgl2) lx4+1(3) [x4‘](4)
X571 -.[xyl(z)
X2 -(X37g)
i (X5 @ X5

iR}y
ELN . ’

@] (Rl |

(96)
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TABLE 2.2.

Forces and Displacements for Inter-Element Matching

at the Junction in Figure 2.14

- Element Force and Displacement Equation Number
No. Expression
B.. £0 B, =0
I} 11 .
{d PG- } (63) (65)
(1) & (4) )
{fPG } (67) (69)
{dps ™} (62) (64)
3 .\ |
{pr } (66) (68)
{fact (92)
(2)
{dgct (90)
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i

Similar equations can be readily written when one or more flat plate elements have
'Bii = 0. A junction of elements could also be elastically restrained, clomped or

simply supported.

These. variations are not included in the present program. The reference quoted in

Section 2.0 gives the analysis when the junction is elastically restrained.
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2.7 ~ Boundary Conditions along any Unloaded Edge of Flat Plate Elem.enf

Any unloaded edge of o flat plate element can, in general, be free, clomped, or -

simpl‘y supported .

The forces and displacements associated with these boundary conditions are those with
respect to the neutral plane of the flat plate element. By putting ¥ = Yo =24 = 0,
in the appropriate equations of Section 2.4.4, the forces and displacements at either

side of the flat plate element are readily obtained.

(a) Free Edge

The forces along a free edge are zero. Hence ”PG-F} =0, or it
Thus, when B“i # 0, Equations (66) and (67) yield:

PG_} =0,

D<4*1{R]} =0 ) or IX,7H{R,} =0 - ()
_‘I/=yo=zo=0 : ¢=yo.=z°'=0
y = +b/2 _ y =-b/2

Similarly, when Bii = 0, Equations (68) and (69) yield:

x,4r,T =0 o X, MRS} =0 (98)
¢=yo=z°=0 \lf=_yo=zo=0
y = +b/2 y =-b/2

(b) Clamped Edge

The bjoundury- conditions are: . ' _ '

{i) w =0
i w =0 | -

7 - L (99)
(1) uv=0 or le =0 :
(V) Ny, =0 o v =0
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(c)

For conditions (iii) and (iv), the first of each are used in the program. |In the
above equations, when Bii # 0, substitution from Equations (28) to (30) and

Equation (35) results in

0 : (100}
-b/2

]

(Xo R}
Y

0 or [Xg_]{R]}
+b/2 y

Similarly, when Bii =0, substitution from Equations (36) to (38) and Equation
(43) results in:

Xy R} =0 or [Xg*']{R]*} -0 aon
y = +b/2 y ==-b/2

Simply Supported Edge

The classical simple support conditions are w = M =N,, =0. When

‘ 22 - Y TN
Bii # 0, substitution from Equations (28), (33), (30), and (35) results in:

X,,HR,} =0 or X, o HR} =0 - (102)
y +b/2 ’ y = ..b/2

Similarly, when Bii = 0, substitution from Equations (36), (41), (38), and (43)

results in:

fl
]

{XIO."'HRI }
Y

0 or {XIO*“HRT*}'

0 | (103)
+b/2 . y -

~-b/2

The unfoaded edges of a flat plate element can also be elastically restrained. This is,

however, not included in the present program. The analysis for this case is given in the

reference quoted in Section 2.0.
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2.8 Buckling Lood and Buckled Form of the Structure under Uniaxial Compression

The principle of inter-element matching discussed in Section 2.6 and the equations for
the boundary conditions along any unloaded side of the flat plate element derived in

" Section 2.7, are applied in this section, to determine the uniaxial compressive buckling
load of the structure. For easy reference, the basic equations used are collected in

Table 2.3. It is pointed out that all the displacements and forces referred to are those

due to the buckling deformation.

The first exemple considered is the arbitrary structure shown in Figure 2.1. The edge

y == b/2 of element (1} is assumed to be simply supported ond the edge y = +b/2 of
the element (7) is assumed to be clamped. Assuming Bii £ 0 for all flat pldte elements,
considerations of the above boundary conditions and those of inter-element matching,

using Table 2.3, result in the following equations:

1 2 3) (4) B ® (7) (8)

R T s el
X10” | { ! ! ! 1 ! R
------ o ! ' ! ! ‘ Ry
+ -1 I ; ) i ]
X3 ,-X3 I : { ) 1 A ;
B v A N R R B
‘ 1 -
B0 I W R R R A le
| -+ . 1 | I : [ N
T M 20 T B R B i
| X X i ! ! Ra3)
e s o et A BN
P X,P L Xy VX : g A 7
e e Rt : l R
(. ! i ! ! ](4)
! | | Xg7 1 Xy ? : -‘
i ! PR | ! | *'R' """ ¢ o0 a4
L ! |74 174 | i
i trvivu sy B '
: ! ! 1 X3t 1T
I 5 ] T R R
i ] | ) | - i )
L e o
| L L X X Xy e
) i : T T R @)
T S R 3" | X
A ] ” S—
I ! o | X
i 5 ! : N SN S— +--8 ][Ry
! P | l X+
L i | | ! | L9 - .



TABLE 2.3

Summary of Flat Plate Element and Beam Element

Equations Used in Buckling Equations

| Force or . Equation Size of '
[Displacement Equation No. Bii Matrix [X] Remarks
N .
{d t} [XS ]{RI} (62), (63) Bii’éo 4x8 Flat plate element
PG X, FHR, '} |64, 69) | B =0 | 4 x8 displacement
i .
+ [)(4 ]{R]} (66)1 (67) Bii/éo 4 x8 Flat 'plafe element
'lpr b *4 . . _ forces
X, "W} | ©8), 69 B, =0 | 4x8
' Iy { } 90 4 x4 Beam element
et | DGR @) 1 - x4 | displacements
“BG} .[XBHRZ} (92) - 4 x 4 Beam element forces
t _ .
[X4 ]{Rl} =0 (97) Bii #0 4x8 Free edge along the
- v *Eifo * = unloaded side of the
= 0] 4x8
[X4 ]!Rl b=q 8 Bii 0 X flat plate element
-t _
[X? ”Rl} =0 _(IOO) ‘ Biiiéo 4 x'B Clamped along the
- B oy : _ unloaded side of the
[X9 HR] } =9 (101) Bii =0 4x8 flat plate element
tip 1
[XIO “Rl} =0 (102) Bii’éo 4x8 Simply supported along
- gt oWy ~ the unloaded side of the
X0 iR, }=( | (103) { .B,,=0 4x8

flat plate element
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The numbers in parenthesis are the element numbers, the same as in Figure 2.1.

Or, written in contracted fom:
_ [XB]{RB} =0 | | (105)
A similar equation can be easily written when Bii = 0 for one or more flat plate elements.

The matrix [-XB] is square and In this case of size 56 x 56. In general [XBI Is nxn

where

n = (8 x number of flat plate elements + 4 x number of beam elements) .

A nontrivial solution of Equation (105) is obtained when the determinant

Ixgl =0 % | | (106)

leI is called the "buckling determinant" of the structure. It can be readily verifled
-that a common factor of sin§ or cosd where 5 = mx/a can be taken out of each row
of |XBI and ignored.

The various terms of the "buckling determimant” involve, In addition to the geometric and

material properties of flat plate elements ond beam elements:
(@) Axial haif-wave number m which is assumed to be the same for all elements.

(b) When B_Ii # 0 the P; values for each flot plate element from Equation (18), or
when Bi-i =0, the Pui and pwi values from Equations (23) and (25). These roots
are, in general, a function of the external load level Fl” in each flat plate

efement.

(¢) The external load level -Fb in each beom element.
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The load level in each element of the structure as discussed above, is determined on the
basis of uniform axial strain. In the present program, a load level (ﬁi])(i) is assumed
on the first flat plate element, (j) denoting the element number. The first flat plate
element need rot be the first element in the structure. The corresponding axial strain

!?] ‘is evaluated from:

o _ Ny - | 107)
‘1 ‘7""!2]" | | (

(¥ ).
kzlgﬁm

The load level in any other flat plate element (n) corresponding to this strain is then

obtained from:
= o fk ;
N = L2 3w o o s
1 | -

Similarly, the applied axial compressive stress r'rk, corresponding to the same axial

strain e?], in any layer k of the beam element is:

o k
o = e” . E” o (109

Knowing the load per unit width ﬁ” on all flat plate elements and the stress Ek in

all layers of the beam elements, the total load on the structure can be readily evaluated.

As mentioned earlier, the various terms in the "buckling determindnt; '“.'leI are -functons
of the external load level. Hence the buckling lood is obtained from Equation (106), by
iteration. An axlal mode m (the same for all the elements) and an initial load !evelr
(N”)(i) in the first qut plate element is assumed. The load levels in all tbe other ele-
ments are evaluated. Corresponding to these load levels for each flat plate elements, when
Bii # 0, Equation (18) is solved fpr the P; values or \_Nhen -Bi,,i =0, Equations .(23) and (25)
are solved for Pui and Py values. The *buckling determinant" IXBI is formed ond evalu-

ated. If it is nonzero, the above procedure is repeated in steps, increasing the load level
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at each step, until lowest axial load at which the "buckling determinant” vanishes is
determined. This is, then, the buckling load for the assumed axial mode m. The Initlal
assumed load level must be sufficiently low, so as to ensure that the lowest buckling
load is not missed, for any assumed m. The buckled shape of the cross-sectlon as
determined from thé eigenvector (discussed later in this section), might Indicate whether
the buckling load determined is the lowest one or not. Buckling loads for a series of

axial modes are evalvated and the minimum determined.

Double roots from Equaﬁon'(lﬁ) or Equations (23) and (25) cause two columns of the
matrix [XB] in Equation (105) to be identical. This difficuity is avercome by identl~
fying within close limits, the food level yielding double roots and ignoring this small
load Interval. The roots when complex, occur in conjugate palrs. Using the conjugate

pair of rootfs in [XB] results in "conjugate columns.”

" For the purpose of determining the buckling load, each pair of "conjugate columns® in
the "buckling determinant" can be converted .into d column of only real numbers and'cnr
~ column of only imaginary numbers, by a process of addiffon and subtraction. By taking
a common factor i(=y/A1) outside, for each column of imaginary numbers, the buckling

determinant is made to contain only recl numbers.

Further, it con be readily shown that in Equation (105} those elements of the vector

'IRB} corresponding fo.a pair of “conjugote columns” in [XB], will be coniugﬁfes, too.
This property is made use of in solving for the eigenvector corresponding to the buckling
load, In order to evaluate the bucklied form of the cross-section. 'By multiplying out
-and adding like terms in each equation of Equation (104), it can be rewritten ;uCH that
the new matrix corresponding to [XB] and the new vector corresponding to {RJ‘:‘m?ﬂm
only real terms. Each pair of conjugate elements of the original vector {RB} will be re-
placed by its real part and its imaginary part. The new system of equations containipg
only real terms, are solved to obtain the modified vector {RB }, by inverse iteration ﬁs
indicated in Appendix A, The original vector {RB} of Equation {105) can be readily ob~
tained from this. The buckled form of the cross-section, then follows, from the displace-

ment equations of Section 2.4.4 and 2.5.3.
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A second example considered is that of a hat-section stiffened plate shown in Figure 2.2,

" The stiffener dimensions and their spacing is repetitive. In the'ﬁgure, the numbers in

parentheses are the element numbers and the dots indicate the inter-element junctions.

The two unloaded sides of the panel are assumed to be simply supported. The equations

for inter-element continuity and equilibrium, together with those for the boundary condi-

tions along the unloaded sides of the stiffened plate, can be written in a manner similar

to Equation (104). Repetitive nature of the stiffeners in this eéxample is taken advantoge

of in writing these equations. The equations for the stiffened plate can be considered to

consist of three basic parts; namely,

().

(it)

(i)

A set of equations, designated as [Tu]{Ru}, for the left side of the stiffened plate,
representing the boundary conditions along the first dot and the inter-element con-
ditions along the next five dots in Figure 2.2 involving elements (1) to (7). The

dots are counted from the left side of the stiffened plate.

A second set of equations, -designafed as [TbHRb}" for a rep.atiﬁve ‘unit, representing
the inter-element conditions along the next six dots (i.e., dots 7 to 12, both inclu-
sive), involving elements (7) to (14). The number of repetitions of this repetitive
unit, in this example, will be one less than the tﬁrul number of stiffeners, since

the first stiffener hos already been taken into account under (i).

A third set of equations, designated as [Tc]{Rc}, for the right side of the stiffened
plate, representing the conditions along the last two dots, involving elements (28)
and (29).

- A repetitive unit consists of a certain number of‘inter—elemen‘t junctions, together

with any unloaded edges, which repeat themselves. Using Table 2.3, these equa-

fions can be wiitten as:
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" Equation (110), appropriate number of repetitions of Equation (111) and Equation (112)
togeihar yield the complete set of equations for the hat-stiffened plate. Since there
are elements common to adjacent units, like elements (7), (14), (28), etc., it fs easy
to see that the vectors {Ra}, {Rb}, and {Rc} will be overlopping each other with com-
mon terms. Thus for the four stiffener case of Figure 2.2, the equations can be written

in the following form:

Can 1 (e o
a ] o
----- T-‘-------| ::i::::
t b b |
L : F-===-] -
E Ty LRy =0 (113)
L 1 LR (113)
I T Ry
o | Eaitateinty bierbp i
' T, R .
- A L ¢ —

Or, written in a contracted form:

[XBHRB} =0 \ (114)
This is the same os Equation (105) of the first example.

The two dotied lines between Ra’ Rb’ etc., in Equation (113) indicates the overlap be-
tween them as mentioned earlier. [XB] is a square matrix. The determination of the
critical load and the corresponding buckled form of the cross-section, from Equation (114)

follows identical lines as described for Equation (105).
It is seen that the matrix [XB] is banded and contains repetitive submatrices [T 1. This

roperty is taken advantage of in evaluating the buckling determinant |X_| for critical
prop _ B

" load evaluation. The method is discussed in Appendix A.
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Buckling load of any ‘other structure under uniaxial compression can be determined in a
similar manner. As mentioned above, the present program assumes -the "buckling determi~
nant " \XBI to be banded. This precludes any structure where the first and last elements

are inter-connected, in which case the banded property is lost.

It {s important to note that the buckling loads and the corresponding eigen-modes are
determined from a general instability analysis, in that no restrictions are placed on the
buckling deformation of the cross-section (except that the angles between elements re-
main unchanged). The éigen-modes are indicative of overall or local nature of in-
stability. In contrast the classical buckling analysis assumes restricted deformation of
the cross-sectiom as in flexural (Euler) mode, torsional mode, ‘|occ| mode, etc. Such

simplifying restrictions can sometimes result in missing the lowest buckling load.

Attention is also drawn to the fact that the loaded edge of each element making up the
'stru.cture is assumed to be simply supported. Thus each flat plate element has o line
condition of simple support and each beom element a point condition of simple support
c;i"fh_lel loaded edges. Thus for structures of complex cross-sectional shape, the overall
end conditions in the present analysis will be different compared to the conventional
Euler instability theory, where the structure as a whole is idealized to a line member
and simply supported, resulting in a point condition of simple suppert at the loaded ends.
The effect of this will be small when the axial half-wave length of buckling is small

compared to the length of the structure.

Finally, the discussion in Section 2.3 regarding the beam idealization is once again

emphasized.
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2.9 Differences in Matrix Designations between Theory and Program

As shown in Section 2.8, for any structure of uniform cross-section and under uniaxlal
_compression, the final buckling equation (e.g., Equations (105) and (114)), is systemo-
tically built-up from the flat plate and beam element equations summarized in Table

2.3. The [X] matrices in this table are designated in the program with type numbers.
Table 2.4 shows the one to one correspondence between the [X] matrices and the type

numbers. Note the minus sign in front of some of matrices.
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- TABLE 2.4

Matrix_Designations in_the Theory and the Corresponding

Matrix Type Numbers Used in the Program

Matrix Designation Matrix Type
in the Theory Number In the
(From Table 2.3) Program

X, "1, Xy 1 3 :
(%7, 1%, ] 1
x, ", o, 4
(X, 1, (X, ] 2
(x| 7
-[X.) 9
(X! 8,10
X, L X, 1 14
Xy, X ] 12
X0 Xy ] 13
Xy 1 [xw*“l 1
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3.0 OVERALL LOGICAL FLOW OF PROGRAM

50325A/BUCLASP

as an
End~Of-File

encountered?

Yes

Read and
preprocess data

CALL. OVERLAY(BUCLASP, 1,0)

Dota checking

_‘ Ll
C'IH'/ i

Compute. Critical
Buckling Load
and Mode

CALL OVERLAY(BUCLASP, 2,0}

Eigenvector
wanted?

Eigenvector and
relative displacements

CALL OVERLAY(BUCLASP, 3,0) CALL BT

2 ,
T B ‘ FINISH )
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Logical Flow of Overlay for Data Preprocessing

DATAPRO

Enter

r Initialize I
! 7 _
Read/Write
Controls, Constants, Geometry

Boundary Conditions
I

(Loop on Elemenis}“

Kind of
element?

Beam el. -

[t

Piate el. Subroutine MACON
Read/Write

Lamina matr. properties
1

S

Put material constants in—
cotsinien! form
Y

Compute stiffness matrices

- Establish Engineering ConstantsJ-
for a filamentary composite

Read/Write
Rearmn element data

¥

Set elastic constants >

4 :
‘Read/Write offsets
¥ .

Compute cross-section geometry

lr

Estublish control matrices defining

subpartitioning of buckling det.
L

Modify control matrices for non—j

standard boundary conditions and

| parck the tlnyv rrmfncc-s into one,

( Retuin )
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" 3.2  Logical Flow of Overlay fér Load Solution

OADING
Enter

Initialize limits for loop on modes

1. o [
SRR MIRUET  [Suboane MEGENE]
| Evaluate redl ' "
| determinant from

leop on
longi tudinul
modes M

! Generate elements of |
) buckling determinant |

—— i —

Lpartitioned matrix. | e
i N AT
: Buckling det, for initial - : I .
toad (reset after found doubi_e.r'oof) e $_ 1' 1// I
» — T Fonciton” 5 '
{ncrc—:me‘gt Ioo_dj-f ] E_E‘s?ab_li;ﬂ—;aﬁ : XIV
Buckling det. for 1 of buckling | (Subroutine RGEN ]
incremanted |oad '>_'determi nant r

|
_7(‘_._.._1._.__._.! }Generute R-matrix
| .

( i 1 L_;m.?ﬁ____.

—— e —

| Clreine ZATG }
| :Find complex root#
I i;\f eq:\_uhbnum i E_:FEBC,I‘E{@-I_—:j
guations _ _ i "
| Determinant expresy
l T > sion for equilibriung
| Le_gu__a_tigni _____ |
L ] , s ! , A
A ';fwgiigpfﬁﬂ?\q
| Evaluate complex I
k : determinant |
1 b}
Yes ncremen
< small enough? — e e e —

wSubroutine DETZER
[nterpolate the load!
No . jwithin the given }
E)ecrecse foad incrementi— | interval . i : .

| I

“linterpolate final load b —

NOTE:  The fogic shown here represents
options 0, 1, 2 for loop on mudes,

tnd of loop ‘

on mode M Logic for option 3 is not shown
- Ll _ but it is essentially the same
I Write final results| logic as applied to several modes
' . - - at the same time,

Return : :
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3.3

Logical Flow of Overlay for Eigenvector Solution

DISPLAC

CeD

1 |

Find q&dresses of determinant blocks
as stored by overlay for loads

1

Find overall bandwidths of
buckling determinant

Compute and print
array space redquirements

-

1

| each block and selects

X |
‘the maximum. 1
|

e e e —— e

i i B i gy

Subroutine TURN 1

Put mairix {A) on a form compatible
with eigenvector routine

—uorounine LLMPAL PR e A ——
| Store banded determi- | Move one row Ioter-‘

L —N'nant so that rows are row'_ﬁ ally in determinant. l
{and diagonals columns. | '

Solve Eigenvector

)

Compute relative displacements

‘Return

e —— ——

e hemitioe Eleovs 1

NI Subroutins EIGV___]
IDecompose matrix and Find factors L and |
literate 3 .times on the I | U such that A = LUq

i B

—_— e e .

jeigenvector. I !

B N S ¥
1 -

= e N

L Subroutine FBSUB _,

ISol.ve Ax = b as :

lly =b, Ux=y |

i _Subroutine DIS__ ]

e l
From eigenvector com-|
jpute displacement of

Ifhe elements.

]
i I
e ——— At —— i e et —
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4.0 COMPUTER PROGRAM USAGE :

This section describes the program from a standpoint of usage and describes the required
control cards as well as the requirements to field length and timing. Specifications are
also given for the card oreparation. :

4.1 Machine Requirements

This orogram is developed using the CDC 6600 computers at the Boeing Company in
Renton, Washington, and requires peripheral equipment as follows:

. Card reader

Line printer

Tape drive (if orogrom is supplied on tape)
Disk - scratch storage space .

& n oo

The program has been written with the intent of compatibility with the CDC 6600
computer installation at NASA,. Langley Research Center.

4.2 Operating System

The operating system used is the Boeing version of SCOPE 3.1, The program is written
in FORTRAN IV and for the sake of easy conversion no spech features of the Boeing
Company compater software have been used. : :

4.3 .Timing and Qutput Estimates

Time consumption for one data set depends on various factors:

a. Number of modes that are investigated for each data set.

b. Number of plate elements and beom elements required to build up the cross~section
The size of the buckling determinant is proportional to total number of elements
and for cases with large number of element a large part of the computer time is
used for determinant evaluation.

¢. Number of plate elements of the same type, in the sense that their plate stiffnesses

are the same. For plate elements of the same type the solution of the equllibrium
equations will be the same and therefore a time saving occurs.
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d. Number of plate elements which are symmetric laminates, for instance isotropic
elements. For symmetric laminates two of the four roots of the equilibrium equations
are independent of the trial load for the some mode, and this is token advantage of
as these twe equations are not resolved for each load.

e. Choice of option for the toop on the modes m. A time saving will toke place when
the option is used where the loop on modes is done for each trial load and apparent
noncritical modes are eliminated from the search as early as possible.

f. A guess value of the load must be provided which is smaller than the actual
critical load to be found. If this starting value is close to the critical load a time
saving would occur.

The actual computer time consumption for some of the test cases run for program checkout
are quoted in the following table (TABLE 4.3.1) and this mFormahon can be used for
arriving at a time estimate.

In general for single data set runs, and with the intermediate printout switch off, the
program will not generate printed output in excess of the default option line limit of
10000, (4096 decimal). However, if many data sets are run this line limit can easily
be reached and thus it is- recommended that the line limit be increased to 100000g or

2000008 during compilation (See Section 3.6), or in the load card.

The average run with one data set, and 2 modes requires from 30 to 100 pages of print,
when the intermediate output is suppressed.

If intermediate output is desired, the amount of output will vary considerably according
to the relation between startload, location of double roots in the DT-determinant, and
the critical load, but the amount is so large the mtermedlafe printout feature is not
recommended Used except for trouble shocting.
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TABLE 4.3.1  Computer Time Consumption - Load Evaluation
1Order of | "~ |CP Time : _
Or :Il:o No. of | Total |[(sec.)for] No. of trial loads|{ CP-time per trial
Pota Se! l:;’c "9 Modes |CP Time |Critical for critical mode load '
et. (sec.) | Mode (sec.)
Test 5 170 1 94.0 | 92.2 67 1.37
Test 2A 216 4 289. 85.2 51 1.67
Test 2B 216 4 53_3.8 170.0 98 1.73
Test 4A 200 3 70.4 |18.6 16 - 1.16
Test 4B 104 4 46.4 | 10.5 25 0.42
Test 6A 200 1 41.6 |40.5 49 0.83
Test 8 288 1 71.0 | 68. 36 . 1.89
Test 3A 24 5 15.1 1.6 12 0.13
Test 3B 24 5 55.9 | 11.5 78 0.15
Test 3C 20 6 9.6 1.2 17 0.07
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4.4 Programmed Diagnostic Meﬁsages
MESSAGE:

Main Program LOADING

1. Above are '50 tries without change
in sign. Double load increment
and start over again.

2. Limit for number of DB-calls of 400
is exceeded, extrapolate for load.
Note answer is not reliable. It is
recommended that you review your
data for a possible change of start
load and load intervals.

3. Warning - a double root in p -
investigate the load region up to
this double root.

4. The first load examined after oassing
the double real roots did not pro-
duce significant difference between
the roots. Perturb load and try
again.

5. The startload was too close to double
real roots. Perturb foad and try
again.

COMMENT:

Arrays are getting filled up, so we reset
their contents and index to zero. Doubling
of load increment increases speed in ob-
taining the critical {oad. ' '

Self-explanatory. We have to stop some-
where .

Stop computation on this mode, and continue
to the next one, if any.

Self-explanatory. Appears only when
intermediate print is switched on.

t

Self-explanatory . Subsequent load is in-
creased by o small amoant.

Self-explanatory. Subsequent load is in~
creased by small amount.
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MESSAGE: . COMMENT:

Subroutine Function DB

1. ZARK failed to converge in the The complex rootfinder ZARK returned an
maximum number of iterations error code. Increase maximum number of
specified. : iterations given in program for ZARK.

(300 presently) Change startioad.

2. ZARK failed - o zero in the path The complex rootfinder ZARK retumed. an
of a subsequent one. : error code. See Section 3.8 of Program
Description Document., Change startioad.

3. An error appeared in the P-values. The DT-determinant in polynomial form
A complex root that is not one of comes out in only even powers of P (the
a conjugate pair. roots). The roots of this polynomial must
then contain only real roots and conjugate
pairs. '
NOTE:

The comments above in the DB-routine related to the ZARK routine does not appear
in normal use of the program, as they are incompatible with the theory. However,
if they should appear, see Section 3.8 of Program Description Document.

Subroutine BLKDET:
1. The matrix A (B or C) has a zero See Section 3.6 of Program Description

row. Document for explanation of this routine.

2. Matrix sizes or relative positions
are incompatible.

3. Zero determinant at block X.
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4.5 Restrictions

The following restrictions apply to this version of the program.

4.5.1 Ahalysis Oriented Restrictions

a. The loading is uniaxial compression, with uniform strain across the cross-section.
b. Each layer is orthotropic with respect to plate axes.

c. Material is fully elastic.

d. The cross-section is uniform in the axial direction.

e¢. Lloaded edges of each element forming the cross-section are simply supported.

4,5.2 Programming Oriented Restrictions

For restrictions pertaining to the mathematical routines, see attached descriptions of
these (ZARK, BLKDET, CDTM, DETZER, EIGV, BLU, FBSUB).

‘a. Maximum number of elements required to describe the three blocks is 25, and
the maximum number of nodes is 20. Maximum number of elements in any block is 14. -

b. Maximum number of types of plate elements is 10. These are of the same type
in the sense that their stiffness matrices are of the same contents.

c. The maximum number of layers is 25 for plate elements.

d. Maximum number of beam elements is 10.

e. The maximum number of layers is 35 for beam elements.

f. The critical load is located within a load interval os size equal to 1.0% of lower
limit of the load interval for loads less than 50 lbs/in. and an interval of 5 Ibs/in.
_for loads larger than 50 Ibs/in. before the interpolation routine is used.

g. The tolerance for the interpolation routine DETZER is set to 10_8 times the load.

h. If the load increment is less than 0.5% of the loud then the spotchecks are not

done. Spotcheck means that the last two intervais will be subdivided to check
when it is suspected that a critical load is bypassed. :
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If the ratio between slopés of the buckling determinant function for two subsequent
intervals is less than 5 then the spotcheck is also abandoned.

The double roots of determinant expression det(DT) = 0 are located within a load

interval of size equal to 0.1% of the lower limit of the load interval (det(DT) =

is the determinant expression for the equilibrium equations). For loads larger than
50 lbs. 0.04% 1is used.

Two real roots of the determinant expression det{DT) = 0 are considered double
if they differ by less than 3%.

The imaginary port of the complex roots of the determinant expression det(DT) =

is set exactly to zero if its numerical value is less than 10° 6, or when it is less
than 1075 times the real part of the number. A similar test applies to the real

part of the number.

There is no coupling between bending and stretching when the B-matrix (coupling
stiffness) is zero. All the elements of the B-matrix are checked and the mafnx
is assumed to be zero when all its elements are less than 1.0.

Care must be exercised in choosing start load and load step for the iteration pro~
cess. For instance startload obviously must -be smaller than the critical loed and
load step be small encugh to prevent two zero crossings of the buckling determinant
in the interval. For the data run to check the program o primary load step of

20 Ibs/in. is found to be satisfactory.

Maximum number of modes that can be investigated in one data set is 30.
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4.6 Operating System Control Cards

4.6.1 Via Source Deck

Col. 1 on cards

Job Control Record Sequence Card
Job Card
Account Card
RUNCS,,,,,,200000,,1)
LGO.
78 (end~-of-record card)
9
Program-Source Deck Source Deck
78
9
Data *Data Cards
6 {end~of-file card)
7
%

| 4.6.2 Via Relocatable Binary Deck

Col. 1 on cards

Job Control Record Sequence Card
Job Card
Account Card
INPUT.
7
&

Binary Decks ' Binary Decks

Data - | *Data Cards

*NOTE: Repeated data sets do not require End-of-Record cards between them.
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4.6.3  Via Absolute Binary Tape

Col. 1 on cards

Job Control Record Sequence Card
Job Card
Account Card :
REQUEST TAPEA.  (66-DXXX, MOUNT/INPUT)
REWIND(TAPEA) : _
COPYBF(TAPEA, BUCLASP)
UNLOAD(TAPEA)
DROPFIL{TAPEA)
BUCLASP.
EXIT.
UNLOAD(TAPEA)
78 (end~of-record card)
9
Data *Data
67 {end-of~file card)

8y

NOTE:  The tape number used will correspond to the tape. allocated for the program
at the installation in question. If the program occupies a file on the tape
other than the first the tape should be positioned accordingly.

*NOTE: Repeated data sets to not require End=-Of=-Record cards between them.
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4.6.4 Field Length

The field length estimate required for this program depends upon the data set that is
run as the array space for the buckling determinant is allocated in a dynamic manner
In blank common. The same is also true for the buckling determinant as stored in a
compact banded manner in the ‘overlay for eigenvector solution. :
Upon the execution of a particular data set the program will compute and print estimates
of the field length required for the load solution as well as the eigenvector solution,
something which can be used in later runs.

In Table 4.6.1 below are given field lengths for some of the test cases.

When the eigenvector and relative displacements are also wanted the user must consider
if the field length is long enough for the eigenvector overlay to accomodate all the
repetitive blocks of the buckling determinant as the full determinant is stored on o
compact banded form. For the loading overlay the field length requirement does not
increase with an increased number of blocks as only three blocks are stored.
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TABLE 4.6.1

Field Lengths

Number of

Maximum
Data éet Overlay (2.0) | Overlay (3.0} [Blocks in Governing Number of

Loading Displacements {Buckling Overlay Blocks in
Determinant 70K
Test 2A 644008 662008 7 (3.0) 7
Test 2B 644008 L‘:é?z‘(?‘()8 7 {3.0) 7
Test 3A 522008 3]0008 3 (2.0) 26
Test 3B 522008 310008 3 (2.0) 26
Test 3C 5155}08 304008 3 (2.0) 38
Test 4A 642008 623008 6 (2.0) 7
Test 4B 531 008 375008 6 (2.0) 24
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4.7 Input Data Format

The data input to this program consists only of cards, and no data tapes are required.

CARD 1

Cols.
1-80

CARD 2

Cols.
1-5

6-10

76-80

CARD 3

Col;s.

6-10

(BA10)

Title of run. Any characters anywhere on the card. This title is printed
out in several strategic places in_the output for the purpose of identification.

(1615)

IPC(1)

ton

IPC Control Array

] Give print of intermediate results (l).
blank  Suppress intermediate results (1).

These intermediate check results (I} include the roots P of the determinant
expression det(DT) = 0 {equilibrium equations).

IPC(2)

1 Give print of intermediate results (II).
blank  Suppress intermediate results (lI).

Intermediate check results (I} include the DB matrix and its determinant
(boundary conditions, buckling determinant). '

(1615)

JPC(1)

JPC(2)

IPC(18) = 1 Calculate only elastic constants, lamina stiffness matrix,

Q, plate stiffness matrices A, B, D for a case when fiber
and matrix properties are given, or if for any other reason
only the material constants are required.

Ponel type identification number. (See TABLE 4;7.1)
Blank for nonstandard types, 1.e. when JPC(4) =.1.

Number of blocks that the buckling determinant is partitioned
into. Includes two end blocks plus the repetive blocks. Cases
with start block only or startblock and endblock only are per~
mitted. (See Section 3.6 of Program Description Document.)
See Section 5.2 regarding checkout of this item.
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_Co!s . .

[1-15

16~20

CARD 4

Cols.

6-10

l-15

JPC(3) =0
= |

JEC4) =0

{f615)

MMI

MMA

MOPT

{(blank) No relative displacements.
Relative displacements will be computed if the available
core allows it.

(blank) Buckling determinant type matrices are set up
internal ly.

Read in buckling determinant type matrices. See
CARD 17 and 8.

Starting value for the loop on the: longitudinal buckling
mode M.

End value for the loop on the longitudinal buckiing mode M.
Option control for the loop on the buckling mode M. Four

options exist:

or blank, start loop at | and loop until o minimum load
is found, then interrupt (Max. 30 loops).

Start the loop at MMI and loop until @ minimum load is
found, then interrupt (Mox. 30 loops).

Start the loop at MMI and loop to MMA regardless of whether

" a minimum load is found or not.

Under this option, the loop on modes is done for each load-
step. Instead of finding the critical load for each mode in
order to select the smallest load, when a sign change occurs
in one or more modes, the program eliminates modes which
do not give sign change, as these modes are not critical.
Finally, only the critical mode remains and the load is
found for this mode. This option should be used when only
the buckling load for the critical mode is wanted. Con-
siderable time can be saved in cases when many modes have
to be investigated.  See Section 5.2 regarding checkout' of
this option.

NOTE: The arrays are dimensioned so that MMA - MMI & 30.
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21-30

31-40
41-50

51-60
61-76

NOTE:

" CARD 6

(3110,4F10.2)

LL Number of plate elements in the section (i.e. in start block,
one repetitive block and end block).

LB Number of beam elements in the section (i.e. in start block,

~ one repetitive block and end block).

NOD Number of nodes in the section (i.e. in start block, one
repetitive block and end block).

AL Length of the section (inches).

STLD Starting load in the search for the critical load (Ib/in.).

(See note for explanation.)
SINC Primary load interval (lb/in.}. (See note.)
SINC2 Secondary load interval (lb/in.). {(See note.)

The loads STLD, SINC, and SINC2 are given s line loads on the first
element of the section. We start with a load equal to STLD and increase
it with step of size SINC until a change in the sign of the D8~determinant
will occur. Using the last load before the sign change as a new start load,

- we now increment the load by SINC2 until the zero-crossing is encountered

again. From this point on the same procedure is repeated, and the incre-
ment halved each time, until the critical load (zero-crossing of DB) is lo-
cated closely enough for the specified tolerance. Obviously the starting
load must be less than the critical load. Alse in some cases the initial
load increments should not be set too high, as the buckling determinant
then could change sign twice within one interval. Judgement will have
to be used here, and it might be worthwhile to re-evaluate these after

a first trial run.

LL,LB,NOD - these variables must correspond exactly to the number of
elements and nodes shown in Table 4.7.1.

(8F10.2)

This card gives the ¢oordinates for one node and Is repeated in sequence of the nodes
for all nodes. See Figures 4.7.1 to 4.7.5.

Cols.
1-10
11-20

ZOR(J} ~ Z-coordinate of node J in right-handed global coordinate system.
YOR(J) Y-coordinate of node J in right-handed global coordinate system.
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CARD 7 (315,5X,5F10.2)

This card is repeated once for each element in the sequence of the elements and gives
the nodes to which it is connected. For beam elements only one node is given.

Cols.
1-5 INP(IL, 1) Node | of element no. IL. See Section 4.7.2.
6-10  INP(IL,2) Node J of element no. IL, Omit this value for beam elements.

11-15  1ET(IL) Type of element:
' =] Plate element
=2 Beam element
| CARD 8 (315,5X,5F10.2)
Cols.

1-5 NBCON Number of nonstandard boundary conditions including total
number of beam elements to be entered. Use blank card
when all boundary conditions are standard (see Card 9) and
no beam elements. When buckling determinant is read in
(JPC{4) = 1), NBCON = the number of beam elements only.

CARD ¢ (315,5X,5F10.2)

The standard boundary condition is free edge, along the unloaded sides or junction
between plate elements but on this card others can be specified. Repeat this card
NBCON times (previous card). Omit if NBCON is zero.

Cols.

1-5 NODE Node of plate element for which the nonstandard boundary
condition is specified. Or, in the case of beam elements,
the node 6f the beam element.

1 Node is simply support (plate element)

6-10 IBCOT

([T

Neode is clamped (plate element) -
-X where 'X' is the number of the plate element to which
the beam element is attached.

CARD 10 (110,7F10.2)

In the loop on elements the sequence of CARD 10 to 12 is used for plate elements.
CARD 13 and 14 are used for beam elements.

Cols.

1-10 L) Number of laminas in plate element No. |.
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CARD n (9F8.2 4X,14)

This curd gwes the thickness and material properties for one layer so therefore pro-
vide one Card Type 11 for each layer in the laminate. The loyers have to be given
in sequence starting from a reference plane, which is located at the surface of the
plate element that correspond to the negative z-axis in the local coordinate system.

The properties can be entered in 4 different ways according to the option control
in cols. 77-80.

a. Give the engineering constants £11, E22, \)IZ, G12 for orthotropic laminas
when known. For isotropic laminas E22 need not be given. _

b. Give fiber and matrix properties and volume fraction coefficient. Continguity
factors have no change for this lamina. See Card Type 12.

c. Same as (b) but contiguity factors change, so set control for later read. See
Card Type 12. If continguity factors are not given for the first lamina they

assume values of zero, until another Card Type 12 is entered.

d. Give the lamina stiffness matrix Q directly.

Cols.
-8 T Thickness of famina (in.).
9-16 Ell, Elt E-modulus (option 0).
= EF E-modulus for fibers (option 1 ond 2).
= Qh Element of lamina stiffness matrix, Q (option 3).
17-24 E22, E22 E-modulus for direction 2 {(option 0). E22 need not be

entered for isotropic laminas. (blank)
GF G-modulus for fibers (option 1 and 2).
Qi12 Element of lamina stiffress matrix, Q (option 3).

i

25-32  RNUA, RNUA Poisson's rafio 12 (option 0)..
ZMUF  Poisson's ratio for the fibers {option 1 and 2).
Q22 Element of lamina stiffness matrix, Q (option 3).

Hon

33-40. G2, G12  G-modulus (option 0).
EM E~modulus for matrix moterial (option 1 and 2).
Qb Element of lamina stiffness matrix, Q (option 3).

41-48 GM  Shear modulus for matrix material (option 1 and 2 only).‘

49-56 ~ ZMUM  Poisson's ratio for matrix material (option 1 and 2 only).
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Cgls .
57-64

65-72

73-76

77-80

CARD 12

VFC Volumn fraction coefficient of fibers {option 1 and 2 only).

ANGLE Angle of the ply in degrees. Only 0° and *90° are permi tted
for full buckling caiculations. Any angle can be used when only
material properties are calculated (option 1"and 2 only) See
CARD 2, cols. 76-80.

NOCT USED

co Option control. There are 4 choices:

(opt. 0) CO =0 Give elastic constants E11, 912 GIZ for isotropic
laminas, for orthotropic Iammcs give also £22.

(opt. 1) CO =1 Give the properties of the laminas in terms of fiber
and matrix properties. Contiguity factors are not
changed for this lamina.

(opt. 2)  CO =2 The same as Option 1, but the contiguity factors

changed for this lamina.

(opt. 3) CO =3 Give the lamina stiffness matrix, Q, direcrfly.

(8F10.2)

~This card contains the contiguity factors CONTI and CONT2 to be used when a
layer's properties are given as matrix and fiber properties. This card will follow the
material properties-card which has the flag CO set to 2 (Card Type 11). Subsequent
layers will use the same contiguity factors unless a change is introduced with another
CARD 11 with the appropriate flag CO = 2. If no CARD 12 is used CONTI and
CONT2 will be set to zero and if constant contiguity factors ofher than zero are re-
qun red then enter them with the first orthotropic lamina.

Cols.
1-8

9-16

-CONT'i Contiguity factor to be used for computation of G-modulus and »12.

CONT2 Contiguity factor to be used for computation of E22 modulus.
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NOTE: The formuloe used for calculation of material constants when matnx and
fiber properties are known have been taken from:

Tsai, S. W., "Structural Behavior of Composite Mafenals,
NASA-CR-71, Section 2.0 (1964)
and '
Ashton, J. E., Halpin, J. C., Petit, P, E., "Primer on
Composite Materials: Analysis Progress in Material Science
Series, * Vol. 1ll, Chapter 2.3, Technomic Publications, 1969.

CARD 13 (9F8.2,214)

This card gives the dimensions and material properties for a beam element (sequence
10 fo 12 is used for plate elements). Three fypes of beam elements are permitted
according to an option control (see cols. 72-80 of this card for description). These
types are: general beam element (of any shape), rectangular, and circular. The
latter two may also be laminated, with up to 25 laminas, in which case this card
glves only the thickness and properties of the first lamina, (inner lamina in the case
of circular) the number of laminas and offsets. Card Type 14 gives the information
for the other laminas. '

Cols.
1-8  EB E-modulus of beam element in longitudinal direction.
9-16 GB G-modulus of beam element material.

17-24 AFB, as AFB  Area of beam element (option 0).

or TB Thickness of the first lamina of the rectangular beam
(option 1). The thickness is the dimension of the beam
element measured paraliel to the local y-axis. See
Figure 2.10.

or RB Outer radius of the first lamina of the laminated circular
beam element (option 2). For a hollow circular beam
 element the hollow part forms the first lamina, with zero
E and G moduli.

25-32 RIYB as RIYB‘ Moment of inertia about yy-axis (option 0).
or WB  Width of beam element (option 1).
33-40 RIZB Moment of inertia about zz=axis (option 0 only).
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Cols.

41-48 RGAM Warping constant for beam element (option 0 only).
The program sets the polar moment of inertia RIP
equal to RIYB + RIZB.

49-56 RJB Torsion constant of bead or tip (option O only}.

57-64 ALFX Angle between the local y-axis of beam element and the .globol
Y-axis - (measured clockwise, from the global Y-axis).

65-72 NOT USED

73-76 NLAM Number of layers if laminated beam element {option 1 and 2
only) (< 35)

77-80 cO2 Option Control. The geometry and material constants of the

beam element can be input in three different ways:

=0 In this option the program does not distinguish between the type
of beam element as all the section properties are calculated and
entered by the user. No laminated beam elements are permitted
under this option.

=1 A beam element of rectangular cross section. Enter the thick-
ness and width and the program will asfablnsh the beam element
cross section properties.

=2 A circular beam element (bead) is used. Enter the radius, and
section properties are computed.

- CARD M4 (9F8.2,214)

This card is used only in connection with Iominnfed_ beam elements and furnishes the

thickness and prOﬁerties for laminas other than the first one. For laminated circular
beam elements, the inner most - lamina is the first lamina. '

Cols. ,
1-8 EXX(IR,1) E-modulus of lamina No. | of beam ¢lement No. IR in longi tudinal
direction. '
2-16 BGA(l) G-modulus for lamina No. | of beam element material.
17-24 TBA(I) Thickness of lamina No. ! of rectangular beam element. In the
' case of circular beam element this gives the radius to outside of
lamina No. |
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CARD 15 {1615)

- Cols.

1-5 ISTOF Number of elements with nonstandard offsets for plate. elements;
i.e., elements where a plane different than the midplane is used.

CARD 16 (15,3F10.2)

Repeat: this card for each dlement affected and omit if ISTOF = 0.

Cols.
1-5 ILN Element number.
615  OFFI1 Offset z_ in the local z dlrechon at the starting end (y =-b/2)

of the o?ute element measured positive in the positive z direc-
tion, from the negative z surfuce of the element to the grid.
See Note below.

16-25 OFF2 Offset y, in the local y direction at the starting end (y =-b/2)
~ of the plate element, measured positive in the positive y direc-
tion, from the end of the element to the grid. See Note below.

26-35 OFF3 Offset z,, ot the end y =+b/2 of the plate element, Measured
S similarly to OFF1.
-36-45  OFF4 Offset y_ ot the end y=+b/2 of the plate element. Measured

o
similarly to OFF2,

NOTE 1:

The grid defines the cross-section such that the plate elements are represented by lines
which normally runs along the midplane of each plate element. Nonstandard offsets are
read in to define elements where this is not possible, for instance the case of two ele-
ments which meet at 180° but are not flush with each other. See Figures 4.7.1 to
4.7.5 and Section 4.7.3. ' o

NOTE 2:
The offsets to be used when the plate element has a beam element adjacent to it are

measured in a similar way but they are measured to the geometric center of the beam
element.
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CARD 17  (1615)

Dimensions of type matrices for buckling determinant blocks. Omit if JPC(4) = 0. |

Cols.
1-5 IDAI Number of columns in type matrix ITYPA. } First Block
6-10 IDA2 Number of rows in type matrix ITYPA,

C11=15  IDMI Number of columns in type matrix ITYPM. } Repetition Blocks
16-20 IDM2 Number of rows in type matrix 1ITYPM. . or Mid-Block
21-25 1DB) Number of columns in type matrix ITYPB. } Last Block

© 26-30  1DB2 Number of rows in type matrix ITYPB. ast Hlec
31-35 I10LX Overlap between ITYPA and ITYPM and between 1TYPM and

ITYPB. {(NOTE: The blocks must be structured such that
their overlaps are equal.)

CARD 18 (1615)
Repeat for each successive row of ITYPA-ITYPM, and ITYPB matrices. Omit if JPC(4) = O,

Cols.

1-5 ITYPA(1, 1)
6=10 ITYPA(1,2)
11-15 Etc.

Use similar card type for ITYPM and ITYPB.
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4.7.1 -Data Card Sequence

For a typical problem the cards are stacked in the following sequence:

TitIeCOrd............................ Card type |

Controls, intermediate print, etc. . . . + ¢« v . e 0 4 o v a0 e 2
Panel type, number of biocks, displace. opt. cont., type matnx control . 3
Axial mode, limits, options . . . . . . e 4
No. of plate elements, beam elements, nodes, length, startioad, '
load intervals . . . . . f e e e e e e a s e we e e e e s 5
~ Coordinates - one card per node e 6
Element data - one card perelement . . . . . . . . . . . o0 7
~ Number of nonstandard boundary conditions . . . . . . . .« o« .. 8
Boundary conditions . . . . ¢ . ¢ 0 b b e e e e e e e e e e 9
Number oflaminas . . . . . « . « + « o« + e e e e e e e e . low
Thickness, material properties, option for plate element e e e e s ©O)
Contiguity factors = o + « o v v o 0 v 0 b e e e e s e e e e s e 12
A
Repeat sequence A .as required by number of laminas in current plate | >
element and change in contiguity factors. ' )
Use sequence C for plate elements in the section )
Beam element (if any) properties, geometry, and option . . . . . . . . I3
Beam element properties for laminas other than the first if beam
element is laminated . . . . . . . . i 0 0 o 0 e e e e e e e |4B

~ Repeat Card 14 as required by number of laminas. Sequence B is used only
for beam elements.

P

o s o S i O 0§ ek S

Number of nonstandard offsets . . . . . « . . . « . . o . ... 15
Offsets . . . . . . e e e s e e b s s s s e s e s e e e e s, . 16
Dimensions of type matnces toberead . . . . . . ... 0. 17

" Type matrices ITYPA, ITYPM, ITYPB « = v v v v o v v 4 e e o o o 18
NOTE:

The lamina properties cards for the plate element must be stacked sequentially in the
direction of the positive z-axis of the local coordiaate system for the element. The
orientation of local coordinate systems are demonstrated in Figure 4.7.1 to 4.7.5.
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TABLE 4.7.1

STANDARD TYPES OF PANELS
T:::;e Description , First Block . Repetitive Block Last Block
. 2 3 &
@
10 Corrugated Plate ) . 55
. 2 Fd . _@_ e
20 Corrugated Core 0 V
Sandwich i | NI
J 4 5
. _ 4
Truss Cord Sondwich @ -0
. . , @ .
5
Honeycomb Core Sand- & 2 vor,
wich with reinforcements t - — —} 2. . ?\ } - ==
@ I _“_ @ 7 F" €3
' | ) 2 4- & @ 8
Integral Pcmel“ !® @ ' I@
' ' . 5 7
‘ ' _® 3 7}(@”4/' @—f F n_ @ 147
Integral Panel with ' - ®@ _ @ @ @ @
Tee Stiffeners - s o ——3
| & kG &




VAR ospd

- TABLE 4.7.1 -

continued

STANDARD TYPES OF PANELS

with local Reinforcement

Type Description First Block Repetitive Block Last Block
| . Q@ 3@‘{ §‘5'© 7 & (2 O o
70 Zee Stiffener Panel ® €) : ° ]@;
2'_44- & 8
. D @3@ 5/, ﬁ@ 3 {3 »
. = 2 V
80 Hot Stiffener Panel @ (@
' 4+ @ &
3@ '
81 Hat Stiffener Pane!l with ®' @ z ﬁ%l‘!@
Local Reinforcement 2 s @ 18
bed
: l@ @ 2@, 1505 16
90 Angle Stiffener Panel 2 @
with focal Reinforcement 437
S
® .
4| Angle Stiffener Panel 1%




4.7.2 Node and ‘Element Numbering System

The table of standard types of panels shows the node numbering system. Each flat plate
element has two nodes (one at each end) and the beam element has one node (at the

geometric center).

A right handed global Y-Z oxes is chosen. ( {:’Y). Y axis is made to coincide
with the midplane of one or more of the plate elements. The nodes are numbered in
the increasing Y direction, starting from the left side of the panel. If there are two
nodes at the same Y coordinate (see for example nodes 2 and 3 of the Integra! Panel,
Type‘ 50) the nodes at that Y location are numbered In the increasing Z direction. The
table of standard types of panels illustrates the node numbering system for various panels
where the global axes are omitted for clarity. The node numbers are shown uncircled.

The nodal coordinates (Y and Z) with respect to the chosen global axes are now easily
fixed.

Elements are numbered in sequence, proceeding in the increasing order node numbers,
starting with node 1. The element numbers are shown circled in the table of standard
types. Panel types 90 and 91 illqstrafe the numbering system when beam elements are

involved.

‘Any other panel can be numbered in a similar way.

4.7.3  local Coordinates and Off-Sets yo and 2,

i

Local y axis is chosen in the increasing direction of node numbers of the ends of the

plate element. See Figure 4.7.1,

The local y-z axes form a right handad system.
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The off-set z_ is measured positive from the negative z surface of the element, in the
positive z direction. The off-set Yo 15 measured positive from the end y = + b/2 or

y == b/2, in the positive y direction.

These off-sefs are used when the nodes are mot in the mid-plane of the element. (Note:

Nodes are fixed with respect to global axes.)

When there are beam elements involved, the off-sets are given for the adjacent plate

elements. (See Figure 4.7.2)

The off-sets when plate elements of different thicknesses meet are illustrated 1n Fig.
4.7.3.

The z, off-sets can either be used on element @ when the global Y axis is ‘as shown
or on elemeni @ {y = + b/2) and on element @ {y = - b/2) when the global Y-axis

colncides with midplane of element @

4.7.4 Buckling Determinant Input (JPC{4) =1 in Card 3)

Any panel or structural section, of type not covered by the standard type numbers
(Table 4.7.1) can be run on the program by reading in the "buckiing determinont.”
The general principles of forming the '"buckling determinant® are given in Sections 2.8
and 2.9. However, a more detailed description is given in this section together with

typical examples.
After idealizing the structure into flat plate elements and beam elements, the nodal -

numbering and the element numbering are done as. per Section 4.7.2. The local coordi-

note system and the off-sets are fixed as per Section 4.7.3.
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Basically, each column of the "buckling determinant' represents a single element of
the structure. The columns are arranged in the order of increasing element numbers.
Each row of the determinant represents either the displacement continuity between

two elements at o time, of all the elements at a junction of elements until the dis-
placements of all elements are equated, or the force equilibrium between all the
elements at the junction. Thus 'n' elements at a junction yield (n-1) rows from the
displacement continuity and one row from the force equilibrium considerations. Each
flat plate element at a junction can be individually free (zero forces), simply supported
or clamped. Such condition yields one separate row in the "buckling determinant, "
for each such flat plate element, at the junction. it is pointed out that the minimum
number of elements possible at a junction is one flat plate element, in which cose it
is not interconnected to any other element. Also, a beam element is always con-

nected to at least one flat plate element.

The submatrix type numbers given below are used in forming the buckling determinant

(see also Table 2.4).

Type No., Description
1 Displacements at the node | {y = - b/2) of the flat plate element.

(Note: The displacements as given by Type 1 have positive directions

opposite to that of Type 3.)

2 . Forces at the node | (y = - b/2) of the flat plate element.

3 Displacements at the node J (y = + b/2) of the flat plate element.
4 Forces at the node J (y = + b/2) of the flat plate element.
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Type No.

10

11

12

13

14

Description

Displacements of o beom element attached to the node | (y = - b/2) of
the flat plate element. (Note: The displacements as given by Type 7

have positive directions, same as Type 3.)

Forces of a beam element attached to the node | {y = - b/2) of the: flat

plate element.

Displacements of a beam element attached to the node J (y = + b/2) _
of the flat plate element. (Note: The displacements as given by Type 9
have positive directions opposite to that of Type 3.)

Forces of ¢ beam element attached to the node J (y = + b/2) of the

flat plate element.

Simply supported boundofy conditions at node | (y = - b/2) of the flar

plate element.

Clamped boundary conditions at the node | (y = - b/2) of the fiat plate

element.

Simply supported boundary conditions at the node J.{y = + b/2) of the

flat plate element.

Clamped boundary conditions at the node J (y = + b/2) of the flat plate

element.

‘NOTE: Submatrix Types 2 and 4 also represent the boundary conditions of o free edge
(zero forces) at nodes | (y = - b/2) and J (y = + b/2), respectively, of a
flat plate element. ‘ ' ‘
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The element junctions are considered one at a time. For those elements at a junction
which dre individually free, simply supported or clamped, the corresponding submatrix
type number is entered in the column corresponding to the element number in the

"buckling determinant, " each element contributing to a separate row. The inter-
connected elements at the junction are then considered two at a time. The appropriate
displacement submatrix type numbers {1, 3, 7, or 9) are each time entered in one
separate row and in columns corresponding to these two element numbers involved.
When two displacement submatrices of identical type number occur in the same row,

one of them is given a negative sign, e.g.

3 3 o [T I0]

After one has thus equated the displacements of all the interconnected elements at a
Jjunction taking two elements at ¢ time, the next row'of the "buckling determinant"
is formed from the appropriate force submatrix type numbers (2, 4, 8, or 10) in the

columns corresponding to all the interconnected elements at the junction.

The rest of the "buckling determinant” is then completed in a similar fashion until dlf

the junctions are covered.

In most cases it is more efficient to divide the buckling determinant into three blocks -
a start block 1ITYPA, a mid block ITYPM (this can also be ﬂ\é repefitive block repre-
senting the repetitive nature of part of the structure as in a s'fi-FFen'ed_ panel) and end
block. ITY‘?B. For these cases the overlap between the blocks must be the same in
terms of the number of submatrix types. |If pOSSibl‘e, it is also suggested to make
ITYPA bigger than ITYPM or ITYPB in order to reduce the storage required by the de-

terminant evaluator subroutine BLKDET..
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‘Three exomples are given below to show the "buckling determinant” formed as des-

cribed above.

EXAMPLE I: All Plate Elements, Figure 4.7.4.

Buckling Determinant:

11 H

3l 3] :
3 ] 1 -1

412121 ° 4] 21 2 ‘

4 4

13 13

The three columns correspond to the 3 elements. The first junction consldered (node 1)
has the flat plate element No. @ only there. The side y = - b/2 of the element Is |
simply supported. Hence the type No. 11 in the first row of the first column. The i
nexi iunctlon. considered is that at node 2. Flat plate elements @,' @, and @ , |
meet at this junction. Two elements are considered at a time. Considering @ and-
@ first and their appropriate displacement submafricqs, yield type 3 in column 1 and |
type 1 in column 2 of the second row. Next one can either consider elements @
and @ or elements @ and @ as the next pair. This yields type 3 in column i

and type 1 in column 3 or type 1 in column 2 and type (~1) in column 3 of the third
row. The displacements of all the elements are thus equated taking two of them at a
time. The next row of the "buckling determinant” is formed from the force submatrix

- types of all the elements at the junction under consideration (node ‘2).' This yields the
fourth row with types 4, 2 and 2 in columns 1, 2 and 3, respectively. The next junc-
tion which is node 3 has the flat plate element No.@with a free edge (y = 4 b/2).
This yields type 4 in column 2 of roﬁ 5. The last iuncﬁon'which is node 4 and has
the flat plate element No @wnh sm:ply supported edge (y = + b/2) yielding type 13

in column 3 of the last row.
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The "buckling determinant™ can be split into 3 blocks, the overlap between the blocks

belng the same, as below.

Start Block:

ol axn

Mid Block:

3 1 3 i

3 ] 1 -1

2 T2] @ a2 12| “x3

4 4
Last Block:.
(1 x 1)

Overlap:

EXAMPLE 2: Two Plate Elements (1) and (3)) and One Beam Element (@)
(Fig. 4.7.5)

Buckling Determinant:

|12 12
9 31 ¢
3 1 or 71 1
4110 | 2 41 10| 2
' 14 14

-~ The tﬁrae co!umn; correspond to. the three elements. The ﬂrs_t" junction consfder"ed, f.e.
node 1 yields type 12 in column 1 of the first row. The next juncilon considered is
at node 3 and is between the flat plate element ® the beam elemenf @ and the
Flut plate element @

Poge 4.32



The second, third, and fourth rows of the “buckling determinant” are formed by con-
siderations identical to the junction at node 2 of Example 1, the only difference being
that the element No.@is now a beam element. The last junction to be considered is

that at node 4 which yields the type 14 in the last column of the last row.

The "suckling determinant® is finally split into'3 blocks, as below:

Start Block:

(2] oax0

Mid Block:

319 3|1 9
3 1 or 7 11 (3 x 3)
4 |10 | 2 4110 ]2

Last Block:

4  ax

Overlap:
: 1
a y y L
z 0

Z-‘-—-l
y .

FIGURE 4.7.4

Wi
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FIGURE 4.7.5

EXAMPLE 3: Stiffened Ponel

Figure 4.7.6 shows a typlcal stiffened panel with stiffeners 5 and 52 repeated over the
‘width of the panel. For the purpose of input to the program, the buckling determinant
is considered to consist of three parts, namely, a start block.ITYPA, a repefitive block
ITYPM, and an end block ITYPB. It is pointed out that all repetitive blocks ITYPM
have elements identical in all respects. This is tllustrated in Figure 4.7.6 where two
different ways of forming the blocks are shown, namely, (a) the one shown in the upper
Half of the figure and (b) the one shown in the lower half of the figure. The upper
- one applies when two outer plate bays have the same width as the plate between adja-
cent stiffeners _S.I and 52. The lower one applies when the two outer plate bays have

widths differing from the plate width between adjacent stiffeners SI and 52.

In forming the “buckling determinant" a “reduced panel" consisting of the start block
ITYPA, one repetitive block ITYPM and the end block ITYPB, as shown in Figure 4.7.7
is considered. This corresponds to the blocks shown in the upper half of Figure 4.7.6.

_T"\e node 4numb'ers and the element numbers are also shown in Figure 4.7.7.

There are 11 elements in the "reduced panel." Thus the "buckling determinant” has

11 columns.
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(Note: Circled numbers are element numbers)



1
711
81 2
3 1
3 ] ITYPA
4 2_ '
3 13
4 |14
311
3 ?
4 12 110
Z 11
8 | 2
3 1 ITYPM
3 1
4 2 |2
3 -3
414
13 ITYPB

The element junctions are now considered one by one. The first junction which cor-
responds to node 1 has the flat plate element @ there simply supported aleng y = - b/2,
Hence the type No. 11 is entered in the first column of the first row. The next junc-
tion considered is that corresponding to node 3. The elements at this junction are the
beam element @ and the flot plate element @ The displacement submatrix types

7 and 1 are thus entered in the second row in columns corresponding to these é_lemenr
numbers. Since there are only two elements at this junction, the force submatrix types

8 and 2 are in a similar manner entered in the next row.

The junction considered next corresponds to node 4, and has three flat plate elements
@, @ and @ Two elements are considered at o time, till the disglncemenfs of

all the elements are equated. Thus the appropriate displacement submatrices of elements
_ @ and @ are entered [n the third row and those for elements @ and @ in. the
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fourth row, in columns corresponding to the element numbers. The choice of element
pair @ and' @ is arbitrary. Instead one could choose for the fourth row, the
element pair @ and @, with the appropriate submatrix type numbers in the right
columns. Having thus equated the displacements of all elements at the junction being
considered, the next row is formed from the appropriate force submatrix types of all
elements at the junction, i.e. @, @, and @, in their right columns. The rows

7 and 8 are formed in similar manner considering the junction at node 5. The junction
considered next is at node 7 and has the flat plate elements @ and @ and the beam
element @ The rows 9, 10, and 11 are formed following the same procedure as with
the other junctions. In equating the displacements two by two, the element pair @
and @ are chosen ﬁrbitrurily, in row 10. !n this choice the beam element @ Is
attached to the side y = + b/2 of the flat plate element @ Hence the type numbers
used for thé beam element @ The rest of thé "buckling determlnant" is formed in a
similar manner. 1t Is easy to see what forms ITYPA, ITYPM, and ITYPB. The overlap

is alos evident.
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4.8 Output From Program

The output from this program is given only in the form of printed output. First, the
input data is printed out and labeled for easier checking. See Section 4.7 for identi-
fication of input data and Section 6.0 for sample problem. §

4.8.1 Geometry

The control information regarding type of section, beam element, and boundary condi-
tions of the section is interpreted and messages printed. The first variable which is
computed and printed out is zh for each plate element. z s the distance. from a
reference plane at one surface to an established neutral plane and thus describes its
location. The lamina stiffness matrix Q for each lamina is then printed and after this
comes the A-, B-, ‘and D-matrices for each plate element. The A-matrix represents
the extensional stiffness of the plate element, while the B~ and D-matrices are the
coupling stiffness and bending stiffress, respectively. Also the angles between' the
plate elements and the actual widths of the plate elements are printed. Three matrices
ITYPA, ITYPM, and ITYPB that identify submatrices of the buckling determinant are
set up and printed. : :

4.8.2 Buckling Loads

The next phase is the actual buckling calculations. The loop on the specified number
of modes prints out first a labe! for identification of the mode and then the AB, AB2,
RES, and ICOM arrays. '

The AB~array contdins the line loads on plate element No. 1 for each trial load in the
search for a critical load while AB2 is used for the total load on the section. RES
contains the respective values of the buckling determinant. ICOM contains appropriate
comments describing the action that was taken at the time by the program.

During the search for a critical load, some loads may give double robts in the solution
of the equilibrium equations. Since the signs of the buckling determinant to either side
of the load which cause the double root are not relevant to each other, this double root
has to be zeroed in. The appropriate messages are printed when this occurs.

After the loops on the modes are completed the buckling loads for all the modes are
printed out. The mode with the lowest buckling load is picked as the critical one and
printed out with its mode. For reasons of identification the title of the run is printed
'in strategic places. Timing information is printed for each mode and for the total data
set. : '
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4.8.3 Eigenvector Qutput

The overlay for the eigenvector and the relative displaceiments (3.0) prints first identi-
fication of the data set as given in the title card.

Then the bandwidths are printed. The core requirements for the eigenvector solution
including the dynamic storage allocation in blank common is shown, for the current
problem together with how many stiffeners can be run for a field length of 70K.

After the buckling determinant has been transformed to a compact banded form and the
decomposition is done the buckling determinant value is printed for checking pumoses.

Each iteration of the eigenvector is printed together with the used normalizing factor.

The routine DIS which establishes the relative displacements first prints out the roots of
the equillbrium equations. Thereafter the relative displacements u and v at certain
points across the width of each plate element are printed out together with the local
coordinate y. For beam elements u and v are given for the geometric center of the
cross=section of the beam element.
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5.0 . VERIFICATION OF RESULTS

Two types of checks are made to verify the program; namely,

(@) Engineering tests, to correlate the results from the program with results available
in literature (Section 5.1). ‘

(b) Functional tests, to check all major program logic, that is not covered by (a)
(Section 5.2).

5.1  Engineering Tests

As stated earlier, the purpose of the "engineering fests” are to correlate the results
from the program with any results available in literature. For convenience, these tests
are separated into the following groups:

{a) Test problems specified by NASA.
(b) Additional test problem from literature.

5.1.1 Test Problems Specified by NASA

The outline of these test problems as given by NASA are given in Appendix B.

TEST PROBLEM 1I:

Table 5.1 shows the geometric and material data of a simply supported web with an
orthotropic flange. The basic section is of aluminum alloy and the flange is symmetri-
cally reinforced with boron fiber composite (0°). The g ometry is so chosen that

buckling corresponds to the "local buckling" mode defined in Reference 1 of Appendix B.
The flange and the web are idealized as flat plate elements, as in the reference literature.
Table 5.1 shows the results from the program. Figure 5.1 shows the same results super-
posed on the results from the reference literature.

For the "beam-column® mode of Problem 1 of Appendix B, the following geometry is
used: '

b =1.51ins.; b. = 0.6 ins.
W F

t =10.05 ins.; t. = 0,15 ins.
w F

Length a = 15.0 ins.
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The material properties used are the same as in Table 5.1. The orthotropic flange is
idealized as a beam element and web as a flat plate element, as.in Reference 1 of
Appendix B. At buckling, the load per unit width of the web, (Nﬂ)w’ from the pro-
gram is 835.3 Ib/in. This gives a value of 1.58 for

o 2
K = (N 11 )wbw
W E [

T D
w

- as against the value of 1.56 quo_fed by NASA in Appendix B.

Figure 5.2 shows the plot of the buckling mode shape results from the program for the
“local buckling” mode ()\/bw = 2.5) and the "beam column" mode.

TEST PROBLEM 2:

Figure 5.3 shows the geometry and the material properties of two 60° truss core sandwich
plates. Figure 5.4 shows the results from the program, together with the results from
Reference 2 of Appendix B. Also shown are the plots of the buckling mode shape re-
sults from the program. '

TEST PROBLEM 3:

Figure 5.5 gives the geometric data, material data and the results from the program for
two simply supported aluminum alloy plates with a single eccentric boron fiber {0%) com-
posite deep stiffener. The results from the program are also shown superposed on the
results from Reference 1 of Appendix B. The plate and the stiffeners are idealized as
flat plate elements as in the reference literature.

Table 5.2 gives the geometric and material data for a series of simply supported aluminum

alloy plates with a single eccentric boron fiber (6°) composite shallow stiffener. The re-
sults from the program are tabulated in Table 5.3. It is seen that two sets of values -

(I and 11} are quoted as results from the program. In both cases the stiffeners are idealized
- as beams with GZS =0, as in Reference 1 of Appendix B. ' '

However, for the results |, the boundary conditions along the unloaded edges of the
plate were w = Moo = Njg = No, =0, as in the reference litergture. Since this com~
bination of boundary conditions is not available in the program, 1t was altered for one
run only, to check this particular test problem. In Figure 5.6, the results | from the
program are shown superposed on the results from Reference 1 of Appendix B.
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The boundary conditions for the unloaded edges of any simply supported plate, as in
the program are w = Mgy =u = Noy =0 (i.e., v replacing Ny in the previously
quoted boundary conditions). The resuits 1l in Table 5.3 correspond to these boundary
conditions.

Typical buckling mode shape results from the program for simply supported plates with
single eccentric deep and shallow stiffeners, respectively, are shown in Figure 5.7.

TEST PROBLEM 4:

Figure 5.8 shows the cross-sectional geometry and the material data of T-section and
integrally stiffened plates, with six stiffeners on each plate.

The lengths of the plates are so chosen that the buckling mode corresponds to the "local
buckling” mode defined in Reference 4 of Appendix B. Thus, Plate A has a length of
15.0 inches and Plate B a length of 12.3 inches. These stiffened plates are idealized
to consist of flat plate elements only, as in the reference literature. The results from
the program including the buckling mode shape are shown in Figure 5.9, together with
the results from Reference 4 of Appendix B.

For "general instability” as defined in Reference 5 of Appendix B, the length of
integrally stiffened plate, Plate B, is increased to 25.0 inches.

Two results are shown in Figure 5.10 for “general instability” of Plate B, one where the
integral stiffeners are idealized as beam elements as in the reference literature ond the
other where the stiffeners are idedlized as flat plate elements. Results from the reference
literature are also quoted. Buckling mode shapes for these two cases are also shown in
Figure 5.10. ‘

The correlation for the above discussed NASA specified problems are seen to be good.
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5.1.2 Additional Test Problems

The results for a few other test problems, in addition to the INASA test problems dis-
cussed in Section 5.1.1, are given in this section. For easy reference, the numbering
‘sequence of the test problems are continued from the last section.

The stiffened plates considered are:

M) Test Problem 5
(if) Test Problem &
(it})  Test Problem 7
(iv) Test Problem 8

~ Corrugated Core Sandwich Plate
Integral Zee Stiffened Plates
Bonded Zee Stiffened Plate
Hat Stiffened Plate

Figure 5.11 shows the geometry and the material data for these panels. The results
from the program and those from literature are shown in Table 5.4. The correlation is
seen to be good for Test Problems 5 and 6. The discrepancies in the case of Test Pro-
blems 7 and 8 are attributed to the differences between the literature and the present
theory in the idealization of the flat plate elements consisting of the attached flange
and the skin to which it is attached. In the literature quoted their indigidual stiff-
nesses are added whereas in the present theory they are treated as a laminated plate
and the overall stiffnesses evaluated, leading to much higher stiffness values. The
idealization of the literature quoted permits relative sliding of the attached flange and
the skin, which perhaps is closer to a rivetted connection. The idealization of the
present theory does not allow such relative sliding and assumes perfect bonding between
the attached flange and the skin. This difference in idealization causes the buckling
stress and the axial half-wave numbers obtained from the program to be higher,

A similor effect has been reported in: Pride, Richard A.; Royster, Dick M.; Gardner,
Jomes E.: "Influence of Various Fabrication Methods on the Compressive Strength of
Titanium Skin-Stringer Panels, " TN D-5389, NASA, August, 1969. In the test results
quoted in this report, the buckling stress of a bonded zee stiffened plate is found to be
about 19% higher than a rivetted zee stiffened plate, which is very close to the dis-
crepancy in the results for Test Problem 7, in Table 5.4.

The buckling mode shape results from the program for Test Problems 5, 6, and B are
shown in Figure 5.12,

The correlation for the test problems discussed in Sections 5.1.1 and 5.1 .2 are seen
to be good and demonstrate the engineering accuracy of the program.
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TABLE 5.1

Simply Supporte'd Web - with Orthortopic Flange

(Test Problem 1)

Gzometric Data:

b =2.0ins.
w

bF = 0.8 ins.

t =0.04 ins.
W

rF =3 x fw

Material Dato:

Aluminum Alloy:

6 .
E” = 522 =10.5 x 107 psi

_ 6 .
G]2 =4.03 x 107 psi

| —
P

|

-

NI AT DTS t
I

Boron Composite:

£, = 30.25 x 10° ps

- 6 .
E22 = 2,03 x 107 psi

— . - . 6 -
Yig = 0.3 (323 = G]2 0.5249 x 107 psi
Plg = O..346
Results from the Program:
‘\/bw 3.012.5]|2.0 }1.33|1.0 | .80].6868] .57
(Nll)w 665 | 657 | 715 |902 | 822 | 795 [833 | 915
{on web)
: k:v 4.4 4.354.7315.97]5.43|5.2515.5116.05
Al
— 9
k= (N”)w I3w
w 2
3 Dw

A = Axicl half-wave length of buckle (%);
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Geometric Data:

Length a (ins.)
'bs (ins.)
}F (ins.)
fc {ins.)

Jotal No. of cells

Material Data:

6 .
E” =E22=10x 107 psi
G.. =3.85 x 10°

12 =3

Y1 = 0.3

Plate A Plate B

6.0 6.0
1.0 1.0
0.02 0.02
0.02 0.01
13 13

FIGURE 5.3. Truss Core Sandwich Plates Data

(Test Problem 2)
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Results from program

Figure 6, Ref. 1 of Appendix B

5 -
4 r
| Og I. 1 4 4l‘
| ' 2 3 4
/b,

A = Axial half wave length of buckle.
— 2
o - Mibw
v b
FIGURE 5.1.  Simply Supported Web with Orthotropic Flange (-B-I-:-= 0.40)
‘ w

(Test Problem 1)

IR e T |
. \ |
\ /
A . .
‘ /
i

() “Local buckling” mode (b) "Beam-column" mode
(\/b, =2.5) |

——
-
-
-_.___..
-
"~

FIGURE 5.2. Simply Supported Web with Orthotropic Flange - Buckling Mode Shapes
(Test Problem 1)
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Results from Progrom

Critical Stress from

Pll\?te Reference 2 of
. Critical Stress | Axial Half- | Appendix B (psi)
{psi) Wave No. .
A 16954 7 16920
B 6019 Q 6070

Buckling Mode Shape for Plate B - Face Restrains Core

Buckling Mode Shape for Plate A - Core Restrains Face

FIGURE 5.4. Results for Truss Core Samdwich Plates

(Test Problem 2)
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Geometric Data:

Length

(iﬂ;_-%

A 3.0 | .048 125.0 2.0 30

(ins.) |(ins.)

Material Data: Same as in Table 5.1,

Results from Program:

N -
No. NP :.%E_ No. oi;'
1b/in.) p | half-waves
A 314.9 2.70 5
B 27 .4 1.42 4

‘ Np = eritical load (Ib/in.) on the plate

ST }.____ 2d I
| | "“”‘L—E;: %:
| - ] |

4 F .
N d2 I"— nt
£ 3t

4 Dp Figure 5, Ref. 1

2 F No. A of Appendix B

© Program results No. B

0 | 1 : ] ) 1 1
0.1 0.2 0.3 0.4
. mt/nd

FIGURE 5.5. Simply Supported Plate with Single Eccentric Deep Stiffener
| (Test Problem 3) '
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TABLE 5.2

Simply Supported Plate with Single Eccentric
Shallow Stiffener - Data
(Test Problem 3)

LQ%MX__A—-M%—W%—’,Z
Bt J_l-q_ c _’I b= -632 ins.,

a (length of the plate) = 240.0 ins.

Plate No. g C (ins.)
c 2.0 2.0
D 4.0 1.0
E 6.0 0.6667
F 8.0 0.5
G 4.0 0.6667
H 4.0 0.334
| 4.0 0.1668
- J 4.0 | 0.0833
K o 4.0 - 0.0

Material Properties:

Same as in Table 5.1, except 623 = 0 for the stiffener.
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TABLE 5.3

Simply Supported Plate with Single Eccentric Shallow Stiffener - Results
(Test Problem 3)

e No. | Rl ) e rogrn | R 1) fro Frorr
Critical Load |Axial half-wave| Critical Load [Axial half-wave

P (lbs} no. m ' P (Ibs) no. m

C 337.1 13 367.2 13
D 571.0 9 662.2 9
E 806.8 8 972.1 7
F 1034.8 7 1283.46 6
G 542.4 10 608.7 10
495.0 1 527.9 1

b 436.6 13 450.1 13
J 370.6 15 375.1 15
K 155.7 1 30 155.5 30

. NOTE:

(1)

2)

Results (l) correspond to the boundary conditions w = Mgy = Njg = Ngyy =0
along the unloaded edges. These boundary conditions were specially included
in the program for this particular test problem only.

Results (lI) correspond to the boundary conditions w =M32 =y = Ngp = 0 along

the unloaded edges. These boundary conditions are used in the program for any
simply supported edge.
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3.0

le

eq

5.0 (-

2,0

[ b
72

14

LN

4

—»‘ L—As/ﬁt

Figure 4, Ref. 1 of Appendix B

© Results from program

E,E = Youn

w

A
5

N

N
e

FIGURE 5.6. Simply Supported Plate with Single Eccentric Shallow Stiffener

0.5

= Stiffener area (in.z)

1.0
EsA /Ebf

1.5

g's Modulii of stiffener and plate, respectively, '(psl')

= (Total buckling load on stiffened plate}/b (Ib/in.)

reinforced plate

2.0

= Buckling locad per unit width on a metal plate of same mass as composite

(Test Problem 3)
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(a) Deep Stiffener (Case B of Figure 5.5)

(b) Shallow Stiffener (Case A of Table 5.2)

FIGURE 5.7. Simply Supported Plate with Single Eccentric
Deep and Shallow Stiffeners = Buckling Mode

Shape (Test Problem 3)
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|<—b—--—b—|- ‘ 5

WSS\L*
% + X

b
i R
S . f--rf

A. Tee Section Stiffened Plate

bs =3.0 ins. ts = 0.080 ins.
b =1.8 ins. t = 0,056 ins.
W . w

bf = 0.54 ins. tf = rw

No. of stiffeners = &

4 .
L —ppt— tw
B. Integrally Stiffened Plate
bs = 2.05 ins. ts = 0.089 ins.
b =1.06 ins. . t =0.058 ins.
w w

No. of stiffeners = &

Material Properties:

- Aluminum Alley
E,. =E, =9.5x 10° psi

1 22

6 .
(':'-12 =Gy = 3.655 x 10”7 psi
Y9 = 0.3

FIGURE 5.8. T-Section and Integrally Stiffened Plates - Data
' (Test Problem 4)
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.
| : Results from Program *
Plate | Length s k, from
No. (ins.) I Critical Stress * Axial half-wave| Ref. °
. k Appendix B
a__ psi H No. m
cr
A 15.0 25800 4.25 5 4.30
B 12.3 29950 1.86 6 1.87
2
. B ks L4 E”
%r
12(1 - )’12)
G,‘"-_-h"'\__ - e
(4} F e~ I
! - |
I b
1 |
\ /
Plate A - Buckling mode shape - "local buckling"

Plate B - Buckling mode shape - "local buckling”

FIGURE 5.9.

1-Section and Integrally Stiffened Plates -

"Local Bucklj ng " Results

(>3]
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lts § p Results from Reference
Results from rogramr 5 of Appendix B |
Plate Number Length
(see Fig. 5.8) (ins.) Critical |Axial half< Critical |Axial half-
Load wave no. Load wave no.
P (Ibs.) m P (lbs.) m
B 25.0 22432 ] 23450 1
(Stiffeners idealized ‘
as beam elements)
B 25.0 29470 1 - -
(Stiffeners idealized
as flat plate elementd

e o e T T T S A o e et
. s S s S T e —
— —— ——
. . ———
— ——— - —

Stiffeners idealized as beom elements

(NOTE: Beam element displacements omitted for clarity)

.-—.______T | "%
' T A
{ ? 1 r ! h

- i ! i '

Stiffeners idealized as plate elements

FIGURE 5.10.  Integratly Stiffened Plates = "General Instability " Results
{Test Problem 4)
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Z1°¢ obpyg

{NOTE: All dimensions in inches.)

Aluminum alloy 7 cells
b t
c I y f a =8.96 b= ,036
) ’ C
/_\_/‘, ) te b, = 2.56 te = 048
Test Problem 5 L_ ’ 7
bﬂ,_,L_.bfz _ b‘F2 = 1,06
b =1.06
[+
Aluminum altoy 6 stiffeners
|-‘— 2 Amria— 24— a bW bf fw=te
Test Problem 6A x § 1 ;_ X 6A 144 192 576 .04
Test Problem 6B ' T ‘;w_ -08 68 4.4 0.9 .288 .04
Test Problem 6C $ o] b 6C  16.0 1.50  .500 .048
a = Axial Length
Material Properties:
6 . _ 6 _
E” = Eyy = 10.0 x 10 psi : G]2 =3.85 x 107 psi Y19 = 0.3
FIGURE 5.11. Additional Test Problems ~ Date




g1 ¢ o8pyg

 (NOTE: All dimensions in inches.)

Aluminum alloy

6 stiffeners

UI- ; " w, * a=16.0
Fay — pe——) r— t
Test Problem 7 tf t —f— bw t b = 1.876 t = .080
#_ w ‘ 5 11 5
T‘ — —— b =1.436 t =t = .048
W w f
bf = 0.500

b Aluminum alloy 5 stiffeners
1

a = 20.0

Test Problem 8 bs =1 = .08
b, = 1.436 =t Tt T .048
bf] =0.5
b{:2 =1.,2

a = Axial. length
Material Properties:
Eyy = Epy = 10.0 x 10° psi Gy, = 3.8 x 10° v.o =0.3

FIGURE 5.11.

12

Additional Test Problems - continued -




TABLE 5.4

Additional Test Problems - Results

Results from Progrom Results from Literature
Plate No. . . . . Remarks
Buckling Stress | Axial half-wave Buckling Stress Axial half-wave

o psi no. m o psi no., m

cr -Ccr
Test Problem 5 19550 5 20400 5 >
Test Problem 6A 21300 21400 -
Test Problem 6B 41600 42000 - g
Test Problem 6C 41900 7 41200 -
Test Problem 7 49800 12 40900 7 T
Test Problem 8 52500 17 47700 10 >

E> Engineering Sciences Data 02.01.35 to 02.01.37,. Engineering Sciences Data Unit, Royal Aeronautical

61" ¢ @bog

Society, London.

E> Becker, Herbert: Handbook of Structural Stability, Part !l, T.N 3782, NACA, July, 1957, Figure 14,



S B

U™

. FIGURE 5.12. Bu::kj“'ﬂMﬂd", Shapas for Test Prgblm 5, 6, and B
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5.2 Functional Test of Program

The program logic is tested by running various data sets such that all major logical
paths are tested. The testing is divided into three categories:

{a) Functional Tests
(b) Inspection
(¢) Engineering Tests (as shown in Section 5.1)

For the purpose of checking the logic of the main program DATAPRO and the routine
MACON, several runs are made where the various Input options as described in the
data Input specifications are tested. Specific checkout for subroutine BLKDET, CDTM,
ZARK, BLU, and FBSUB is given in the Program Description Document under their re-
spective subroutine descrigtions.

For subroutines where the logic is considered trivial, checking is done by inspection.
For subroutines DB and DBGENS the program has also been checked through inspection
of the intermediate results that are optionally printed out.

Engineering tests shown in the previous two sections serve the purpose of functional
tests for all subroutines and the three main programs, as the data included there covers
the remaining logical design of the program. The degree to which this data is shown
to give correct results is also indicative of the correctness of the program logic.

The test procedures for the various routines are given in Table 5.7.

The items that are tested in the various data sets are shown in Tobles 5.5 and 5.6.

Data for engineering tests is given in Section 5.1. The data for the functional tests is
available upon request.
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TABLE 5.5

Engineering Test Data as Functional Tests

| Data Set
t 1 ™
em Name Comment No. 1 | No. 2 No. 3 No. 4
_ Corrugated core ‘ o
JPC(1) = 20‘ sandwi ch Test 5
_ Truss core
JPC(1) = 30 X . Test 2A Test 2B
sandwich
JPC(1) = 50 Integral Panel Test 4B
JPC(1) = 60 Integral Panel with Test 4A
- _ Tee-stiffeners s
JpC() = 70 Zee Stiffener .. 5 Test 6A Test 6B | Test 6C
_ Panel
JPC(1) = 80 Haot Stiffener Panel| Test 8
1opc@) =1 Read in fype matris .\ Test 3A Test 38 | Test 3C
for buck. element
JPC@4) =0 P’pe malrix set Up | 145 5 Test 2A Test 4B | Test 4A
: y program
JPC(3) =0 Load only ALL CASES
JPC@3) =1 Eigenvector TESTS 1 to B
IBCOT = 1| Simply Supported | r . 3A | Test 38
Edge
IBCOT = ~XX Ee‘"“.E'e’"e“* Test 3C | Test 3D Test 3E | Test 3F
oo ocation
_ : i N
1 See Section 4.7 for Data Input Specs
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TABLE 5.6

Functional Tests

Data _Set _
[tem Nome 1 Comment No. 1 No. 2 ‘No No. 4
' _ Honeycomb Core
JPC(1) = 40 Sandwich 11E 11F
JPC(1) = 10 Corrugated Plate | CORP!
JPC(1) = 81 Hat ?ﬁffen?rs wi th e 11D
: location reinforce. _
JPC(1) = 90 Angle s.l'iffeners with 11AX
loc. reinforce. |
JPC(T) = 91 Angle sf.iffeners with 11A 118
loc. reinforce. Il
- JPC(1) = 100 Plate OPL3 iPL3
No. of diagonal )
| JPC(2) =1 oaritions 9 OPLX1 (Partially ghecked out}
JPC(2) = 2 " OPLX2 | (Partially checked out)
JPC(2) =3 or " OPLX3 OPL3 IPL3
' more
_ Intermediate .
IPC(H) =1 Results QPLYSI
IPC(2) =1 " QPLY3
IPC(16) = 1 Interrupt u.ffer data QPLY5
preprocessing
CO =0 Read engineering QPLY1 T
. constants
CO =1 Reod.ﬁber and. QPLY?2
- matrix properties
CO =2 Contiguity QPLY2
actors
Co =3 ‘Reod Q-matrix | QPLY4 ) i
1 - See Section 4.7 for Data Input Specs
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1

TABLE 5.6 = continued

Item Nam C t Deta_ et
¢ -ommen No. 1 No. 2 No. 3 | No. 4
CO2 =0 Seneml Beam cLac -
L ement | i
_ Rect. Beem Elemen
coz =1 Laminated CL3B
_ Rect. Beam Element T -
co2 =1 turned 90° CL3A
_ Circular Beam .
co2 =2 Element Laminated CBlA
MOPT = 0 Program sets range QPLY?2
of modes _
| N - User sets lower _—
MOPT = 1 mode limit QPLY4"
Alternate |
MOPT =3 mot:;':a ® 199 ON | ZEEPI (Partially| checked out)
MOPT = 2 User sets range of | QpLY1

modes
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TABLE 5.7

Functional Test Procedures for Program Subroutines &

Subroutine or

Determinant

Program Name . Purpose . Tests

BUCLASP Main Program Engineering and functional test dota,
Driver inspection

DATAPRO Main Program Engineering and functional tests, inspection of
Data Preprocessor | out formats

MACON Material Constants | Logic trivial, functional test data, inspection

‘ Main Program C e .

LOADING Load Solufion Engineering and functional tests

DB Buckling Engineering test data, inspection of coding,

- Determinant inspection of intermediate results :

DT Equilibrium Logic trivial, engineering tests, inspection of
Equations coding

fficients

RGEN E::m';:;r:s for Logic trivial, engineering tests, inspection of
Equations coding

' Generates Elements | , . . . | — . .

DBGENS of Buckling Logic trivial, engineering tests, inspection of

coding, inspection of intermediate results

BLKDET, ELIM
MATZ, TRANSI

Real Determinant

See Section 3.6, Program Description Document

CDTM

Complex
Determinant

See Section 3.7, Program Description Document
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TABLE 5.7 - continued

" Functional Test Procedures for Program Subroutines

Subroutine or
Program Name

Purpose

Tests

Complex Root

ZARK Finder See Section 3.8, Program Description Document.

DETZER Interpolation See Section 3.9, Program Description Document.

DISPLAC ’E\?a::w}::i:man d Engineering and functional tests, temporory

‘ Digsplacement intermediate print

BANDW zlfnﬁuziﬂc:‘:'dth Engineering and functional tests inspection,

o determinant temporary print

COMPAC lg::f:irn:::i:i:ng Engineering and function tests, print of determinant

' compact form value after BLU routine .

Transfer one row

TURN to compact Temporary intermediate print, inspection:
form

EIGV Eigenvector Engineering and funchonu! tests, convergence
Solution checks

BLU Decomposition See Section 3.14, Program Description Document.

FBSUB zzg:::zfi:fkwmd See Section 3.15, Program Description Document

DIS Relative Engineering and functional tests, inspection of
Displacements consistant displacements.
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6.0 SAMPLE PROBLEM

6.1 Input for Sample Problem

TEST PANEL TYPE NO § INTEGRAL PANEL 5 STIFFENERS

3 5 g
5 9 2
? ] | 12.3 2000, sn. 5.
0.0 -2.05%
0.0 0.0
1,038 6.0
0.0 2.0%
1.058 2.05
6.0 " 4.0
1.055 4,10
0.0 6.15
1 2z 1
2 3
2 4 1
4 5 1
s 6 1
& 7
6§ . a8 1
2
1 1
a 1
1
.089 9.5+6 : .3 3.655+6
. 1 .
058 9.546 ' .3 3.655¢5
1 .
089 9.546 .3 3.555+6
t
058 9,546 .3 3.655+5
1
089 9.5+5 3 3.655+6
1
058 9.546 .3 3.655+6
1
089 9.5+6 .3 3.655+8
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6.2 Qutput for Sample Problem
PROGRAM SO325A/BUCLASP CERTIFIED 11/20/70 . NovaZzy o

BUCKLING LOACS OF ORTHOTROPIC LANINATED STIFFENED PLATES

LOADING . == UNTAXTAL COMPRESSION

BOUNDARY COMDITIONS -- LOADED EDGES ARE SIMPLY SUPPORTED, UNLOADEL SITDES
ARE FREE, SIMPLY SUPP., CLAMPED, OR SUPPORTEC BY BEAM ELEMENT

BEAM ELEMENT HAS SIMPLY SUPP. ENDS AT ITS NEUTRAL AXIS

e 8 e g e R AR SRR N R A AR R Ay L e e ek P

TEST PANEL TYPE NO § INTEGRAL FANEL 5 STIFFENERS

. . -
SECTION TYPE ED ]

MM = ]
MMA = 8
MOPT= 2

. NUMBER OF ELEMENTS L = 4
HUMBER OF BEAM EL. B = o
NUMBER OF NOCES NOD = 8
LENGTH AL = 12.300

STARTING LOAD ' STLD = 2000 . 000
PRIMARY INTERVAL SINC = 50.000
SEQ. INTERVAL SINC2 = 5.000

NODAL COORDINATES

NODE z Y
1 0.0000 -2.0500
2 . 0.c000 0.06000
3 1.05%0 0.60G0
4 0.0000 2.0500
s 1.0530 2.0500
&  0.0000 4.1000
4 1.0550 4,1000
# 0.0000 §.1500
ELEMENT DATA ‘ .
CLEMENT NO  NOPE 1 NOCE J
| 1 2 1
2 2 .3 1
3 2 4 1
4 4 ] 1
[ 4 8 ]
¢ $ r 1
r $ [} 1

BOUNDARY CONDITIONS
- NGPE CO0E
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ELEMENT NUMSER = 1 FLAT FPLATE

HUMIER OF LAYERS LA = t

LAYER NO 1  INPUT OFTION NO 0 WAS USED

THE MATERIAL PROPERTIES WAS ENTERED AS Eii,E22 ETC.

THICKMNESS T = -Ga%0
E-MODLYUS  E1 = 95000600 . 600U,
E2 = 9500600 .0000
POISSONS RATIO RNUA= « 3000
RNUB= -3000
TORSIONAL MOD. G12 = 3655600 .606G
LAYER EXX Exy MUXY HUYX

H 9. 3000O0E+06 9. 500GCOE+G6 3.60GGoGE-OL 3.006G0CoE-0)

\-

3.6550CC0E+D6
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3-MATRIX LAYER NO
10439560.440
3131868.132
' 0.000
LOCATION OF NEUTRAL PLANT
RELATIVE TO REFERENCE PLANE
A-MATRIX
929120.879
270736.264
0.000
B-MATRIX
.G00
0.000
D-MATRIX
613.297

183.989
0.00D

3131868.132
10439560.440
0.060

0445

278736.264
92912G.87%
a.0o0

- GO0
0.06C

183.989
613.297
0.0oo

0.000
0.000
3655000.000

0.600
0.GGoO
325295.06G0

0.00o
0.000
.000
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ELEMENT NUMCER F FLAT PLATE

NUMBER. OF LAYERS LA =

LAYER NO

3 INPUT OPTION NO D WAS USETD

" THE MATERIAL PROPERTIES WAS ENTERED AS E11,E22 ETC.

LAYER

1

THICKNESS 1

E-MODULUS €1 =
g2 =
POLSSONS RATIO RNUA=
RNUB=

TORSIONAL MOC. G12 =.

Exx EYY

9.5000GCE+G6 - 9.50000CE+GE

.0580
9500600.0000
935GG000.0G00

«3GGo

.36060
3655000.0060

MUXY

3. GOuGooE-01

3. GOOCGCE -0

3.655000E+06
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o-iurnu . LAYER NO 1

104239550.440

3131868.132
3131886.132 1G439560.440
0.Go0 . 0.009
LOCATION OF NEUTRAL PLANE
RELATIVE TO REFERENCE PLANE 5230
A-MATRIX
605494 . 505 191648.352
181648.352 605494 . 5G5
0.060 0.Coo
B-MATRIX
GO0 ) .000
.000 _ .000
0.000 ‘ G.Coo
D-MATRIX
169.740 _ 50.922
50.922 : 169.740

0.06G ‘ b.500

0.060
~ 0.000
36550G0. 000

0.000
0.Goo
211990.6G06

0.000
C.0GG
006G

0.000
a.o00
59.428
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| ELEMENT WUMER 3 FLAT FLATE

NUMBER OF LAYERS kA= 1

LAYER NO ! INPUT OFTION NO O WAS USED

THE MATERIAL PROPERTIES WAS ENTERED AS E£14,E22 ETC.

THICKNESS n = 0890
E-MODULUS 1 = 95006000, COC0
e = $500000. 0000
POISSONS RATIO RNUa= « 3060
RNUD = « 3000

TORSIONAL MODB. 612

3655000.06000

LAYER EXX Eyy MUXY ' MUYX G

1 9. 500000E +06 9.500C0GE+G6 3.0G0COCCGE-Of  3.000CCOE-G2 3.655000E+06
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LAYER NI {

Q-MATRIX
10439560. 440 3131868.132
3131868.132 16439560, 440
0.000 | 0.06G
LOCATION OF NEUTRAL PLANE
RELATIVE TO REFERENCE PLANE 0445
“A-MATRIX
929120.879 278736.264
278736.264 929120.879
0.000 0.060
B-MATRIX
.000 .00
066 060
0.000 0.66G
D-MATRIX
613,297 183.989
183.989 613.297

0.coo : 0.60G

0.000
0.000
3655000.000

0.000
0.000
325295.000

0.600
0.000
.0Go

0.00G
G.060
214,722

—
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ELEMENT NUMSER & FLAT PLATE

-

NUMBER OF LAYERS LA =

LAYER NO

1 INPUT OPTION NO

O WAS Uscr

THE MATERIAL PROPERTIES WAS ENTERED AS E1l,E22 4 [

THICKNESS I =
E-MODULUS £ =
E2 =
POISSONS RATIO RNUA=
RNUB=

TORSIONAL MOD. G12 =

Exx EvY

9.5G00GOE+GE  9.56600GE+06

.{580
95G0GCA. 0000
950GGG0.GO00

« 3000

- 3600
3655000.6000

MUY

L

3.000CG60E-02

MUYX

3.60GO0CE-G1

3.655G00E+06

- Page 6.10



a-mamRIx)  LAYER NO
10439560.440
3131068.132
0.000
LOCATION OF NEUTRAL PILANE
RELATIVE TO REFERENCE PLANE
A-MATRIX
605494. 505
181648.352
0.600

B-MATRIX -

D-HMATRIX

3131868.132
16439560, 440

.0290

181648.352
605494, 505
G.0co

- 000

0.6co

50.922
169.740

0.660

.060

D.000
0.000
3655000000

0.000
0.0o0
211990.060

0.000
0.000
.000

a.000
0.600
59.428
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ELENMENT NUMDER - FLAT FLATE

L L LT T A P

NUMBER OF LAYERS CLA-= 1

LAYER NO 1 INPUT OPTION NO 0O WAS USED

THE MATERIAL PROPERTIES WAS ENTERED AS Ef1,E22 ETC.

THICKNESS T = .0890
E-MODULUS El = 9500600, CGOU
E2 = 9506000 . 0060
POIS550M5 RATIO RNUA= .3000
RNUB= . .3000
TORSIONAL MOD. 612 = 3655000.0060
LAYER EXX EYY MUXY MUYX

1 9. 5CO00CE+O6 9. 5GO0COE+06 3.00CGO0E-02 3.000G00E-01

3,635GO0E+CS
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Q-HATRIX LATER NO 2

10433560, 440 3131868.132
3131860.132 10439560,440
. 0.000 ' 0.000
LOCATION OF NEUTRAL PLANE
RELATIVE TO REFERENCE PLANE 0445
A-MATRIX
929120.879 . 278736.264
279736.264 92912G.879
6.0t 0.000
B-MATRIX
600 .Gog
.06G Loo0
0.600 ¢.Go0
_D-MATRIX
613.297 183.989
183.989 613.297

D-m . U-om

_ 0.000
- 0.0006
3655000.G00

G.0o0

214.722
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ELEMENT NUMBLR & FLAT PLATE

NUMBER OF LAYERS LA = 1

LAYER NO I INPUT OPTION NO O WAS USED

THE MATERIAL FROPERTIES WAS ENTERED AS E11,£22 ETC.

THICKNESS T = ) G580
E-MODULUS Ef = 9566060 . 6000
E2 = 9500000 . 6000
POISSONS RATIO RNUA= . 3000
) RNUB= 3060
TORSIONAL MOD. 612 = 36550C0.6600
LAYER EXX EYY MUXY MUYX G.

i 9.350000GE+06 9. 5GGOC0E+GS 3.0CG0CUoE -0 .3 . GGGGGUE-ﬁI 3.655000E+06
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Q-MATRIX LAYER NO

10439560.440
| 3131868.132
o.nuﬂ

LOCATION OF NEUTRAL PLANE
RELATIVE TO REFERENCE PLANE
A-HATRIX
605494, 505
181648.352
0.060

B-MATRIX

D-MATRIX

3131868.132
10439560.440

0230

181643.352
605494.505
G.0Go

Ry
0.cou

s0.922

169.740
g.cou

BT

g.coo

0.000
0.0600
3635000.000

' 0.000
0.000
211990.0GD
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ELEMENT MNUMBER ? FLAT PLATE

- .-

NUMBER OF LAYERS ) LA =

LAYER NO

1 INPUT OPTION NO

0 WAS USED

THE MATERIAL PROPERTIES WAS ENTERED AS E1f,E22 ETC.

LAYER

THICKNESS T =
E-MODULUS "B =
E2 =
POISSONS RATIO RMUAS
RNUB=

TORSICNAL MOD. 612 =

Exx Evy

9. 5G0GGGE+06 9. 5C0000E+06

0890
9500000.0660
9560000, GCoO

-3000

- 3000
3635006.6600

MUXY

3.0C66G0E~G1

NUTX

3.000C0GE-O2

3.655000E+06
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S~-MHATRIX LAYER NO 1
10439560.440 3131868.132 0.GGO
3131868.132 10439560 .440 0.06a
0.000 0.Goo 3655000.0G0 -
LOCATION OF NEUTRAL PLANE
RELATIVE TO REFERENCE PLANE 0445
A-MATRIX
929120.879 276736.264 C.Goo
278736.264 929126.879 0.GGG
0.000 0.660 325295.660
B-MATRIX
800 GGG 0.G66o
.00 .GGo 0.00G
0.000 0.6oo 6CO
D-MATRIX
613.297 103.589 0.600
183.989 613.297 0.060
0.000 0.0660 218,722
SUMMARY OF TYPES OF PLATE ELEMENTS
ELEM. NO. TYFE NO.
1 1
2 -
3 1
P 2
s 1
6 2
4 1
NUMBER OF NON-STANDARD OFFSETS -0
ELEN. NO. WIDTH TRANSFORMA TTON EL. TYPE
SIN cos
1 2.0%000 0©.00000 1.00CCO FLAT PLATE -
2 1.05500 1.00000 0.00000 FLAT PLATE
3 2.05000 O©.00000  1.00600 FLAT PLATE
4 1.05500 $.000006 0.00600 FLAT PLATE
5 2.05000 0.00000 1.00000 FLAT PLATE
¢ 1.03%06 1.00000 O0.00000 FLAT PLATE
Y 2.0%000 0.00000 $.00000 FLAT PLATE
NCT OFFSETS .
START 20 _ $TART Y0 END 20

ELEN. NO.

END YO

4
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1 .G0GGO . -~
2 .0G0G0
3 .Goooo
4 .GOGoo
s .CO0GH
——— & ‘ -00G00
? .00Coo
ITYPA-MATRIX
11 (/] o
3 1 o
3 o 1
4 2 2
0 4 o
ITYPH-MATRIX
3 1 G
3 0 1
4 2 2
o a 0
ITYPE-MATRIX

OO0k WW
OahOe

0.0GGG0
0.GEG6O6
0.00G0D
0.00GoD
0.00000
0.00660
0.00G0G

.060GG
.06G00
.00000
.00000
.00GE0
.00000
.00G00

ARRAY SPACE REQUIREMENTS FOR BUCKLING TET. BLOCKS ARE

 DBMA-MATRIX (+SCRATCH SPACE)
DBM -MATRIX
DBMB-MATRIX

SCRATCH ARRAYS

TOTAL ARRAY SPACE (BLANK COMMON}

672 LEC.

384 DEC.

480 DEC.

64 LEC.

1600 PEC.

G.0GcCo
0.006Go
@.00000
0.000GD
0.0C000
0.6a00g
0.60000

\ pooooG1240 OCT.

\

Looosoo ocT.

0o

)

4G OCT.

BOGDOGO100 OCT.

BO0OCE3106 OCT.

04430

.02960
.04450
-02900
04450
02900
04450
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ASSUMING A PROGRAM LENGTH OF COGGGSG0GE  OCT.

(EXCLUTING BLANK COMMIN)

FOR LOAD CALCWATION THE

RECOMMENCED FIELE LENGTH IS - QGGGG5JIGG T,
Sedrieoy: ORI UL X x 5 sk e s
TIME FOR DATA INPUT AND PREFROCESSING 414 CF-SEC.,
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BRI RIS REFAFTTSIXBEAFACIIFIILD

] . [
] WODE I3 M= 5 3
+ T ooa
‘ ‘ .

QTR e R

M o=z 5
LOAD ON FIRST EL. TOTAL LOAD DB-VALUES: COMMENTS
(PPLE) (POUNES) : {BUC. LET)
2000.0006G0GUGE 31475.201 -7.45516E-01 , T2
2030 .5000006000 32262.163 -8.71262E-01 712
2100.0006G6CC000 33649.045 -9.55128E-01 112
2450.000G000000 33335,927 -6,72765E-02 716
2200 .GoOGGGH600 34622.809 -7.G9164E-02 716
2250.0606G606600 35409.691 -7.19374E-02 S 716
2300.000000GCG0 36196.573 -6.99887E-02 : 716
2350.00600066665 369a3.455 -6.501G1E-G2 716
2400.0COBOLOGEO . 37770.337 -9,.15635E-01 o 712
2450.0066600000 3p557.219 -7.59863E-01 T2
2500 . 0CO00CGGED 33344.10¢ -5,85140E-01 nz
2%50.0000GG0G00 401306.983 -4,10915E-01 - T2
2600.006G66CCU00 40917.865 -2.55528E-01 na
2650.600C0006G00 41704.747 -1.336GCE-O1 , T2
2700. CCO00C0600 42491.629 -8.42731E-G1 ' 708
2750 . 00000GO000 43278.511 -1.78043E-0¢ o8
268060. 0COOCCGO00 44065,393 3.54537E-01 SIGN CHANGE IN DB 04
27585 . GOGCCOCO00 43357.199 -1.40829E-G1 708
2760 . COGLGOCG0D 43435.888 . =1.G8IGGE-D1 08
2785 . GOOGLOGOGH 43514.575 -7,961T1E-02 08
2770.GD00GGG000 43593.264 -8.82139E-01 " T04
2775 .00660CH000 43671.952 -5,50364€-G1 04
27380.00000066G0 43750.640 -2.T4440E-0L T04
2785.6000C00OC00 43829.329 ~8.032C4E-01 oo
2790.GGOOLLGE00 43908.017 ] 1.2656GE-G1 SIGN CHANGE IN DB . TG4
2787. 5060000000 43868.673 7.01617€-01 SIGN CHANGE IN DB 700
2786.3343848181 43850.329 3.69521E-01 696
2786.2947104498 43849. 7064 -1 .80343E-08 ‘ 692
2786.2958848077 43849.723 " r.03582E-02 680

2796.2998569576 43843,722 . ~8.57445E-02 (-1
ELEMENT LOALS MOLE W 5

ELEM. LINE LOAD TOTAL ELEMENT ELEMENT

NO. | (PLATE EL. ONLY) LOAD TYPE
L 2786.2959 LBS/INCH ‘ 3711.9066 LBS FLAT PLATE
2 1815.7883 LBS/INCH : 1915.5567 LBS FLAT PLATE
3 2786.2959 LBS/INCH 5711.9066 LBS FLAT PLATE
4 1815.7883 LBS/INCH 1915.6567 LBS FLAT PLATE
] 2786.2959 LBS/INCH 5711.9066 LBS FLAT PLATE
§ 1815.7883 LBS/INCH 1915.6567 LBS - FLAT PLATE
r 2786.2959 LBS/INCH $711.9066 LBS FLAT PLATE

AXTAL STRAIN IS 3.29544E-03

- CRITICAL LoAD
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LINE LOAD ON EL. ONE 2786.296 P.L.I.
TOTAL LOAS : 43849.723 POUNDS
MOCE M = 5

‘TEST PANEL TYPE NO § INTEGRAL PANEL 35 STIFFENERS

TIMING
FOR MO2E M = 5
EXTCUTION TIME IS 11.180 CP-SECONCS -
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SAIIHIFEITIEISIIXFFAEXISHFE 32N

-
&
®
»

MOCE IS M

=

]
$ &
L]

s ]

Loab oN FIRST ZL. TOTAL LOAD
' (PLI} (POUNTS) -

2600 . CLOBOGGEGO 31475,281
2050, GOOCOUCGGD 32262.163
2100. DOOGOOLOLG 33649.6G45
21 50.006C000G0D 33335.927
2200.000606600G 346822.809
2250. 6606006600 35409.60t
2300.0G6600GCAG0 36196.573
23%0. 000060066 36983.455
2400 . 0O00COOGOC 37770.337
2450 6666000660 33557.219
2500.CGOOO0GOGD 39344.101
2550. 0666066060 40130.983
2600.06GO00CUGH 4G317.8565
2650. 0060060600 41704747
2700. CGOBGLGO00 42491 .,529
2655 . 600DGCO5GC 41783.435
2660 .CGOGOGCOG0 41862.124
2665 . BOGOOCGGO0 41940.812
267D, DO00COOGCD 42019. 560
2675, 000C000000 42098.188
2572, 5000600000 . 42058.844
2670. 6024755708 42G28.982
2670.5498011 162 42028.153
267D.5483943205 42028.130
2670. 5484210205 42028.131

ELEMENT LOALS MXE MW 6

ELEM. LINE LOAD

NO. {FLATE EL. ONLY}

- AW

AXJAL STRAIN IS
CRITICAL LOAD

LINE LOAD ON EL.
TOTAL LOAD
MODE W = [}

2670.5384
1740.3574
2670.5484
1740.3574
2670.3484
1740.3574
2670.54p4

ONE

LBS/INCH
LBS/INCH
LBS/INCH
LBS/INCH
LBS/INCH
LBS/INCH
LBS/INCH

DB-VALUES
(BUC. DET)
-1.39077E-01
-1.685G1E-01
-1.94337c-01
-2.1165GE-01
-2.17090E-01
-2,08T135E-01
-1.86682E~01
-1.53584E-01
-1.142335-01
~7.475896-02
-5.58282E-01
~-2.80G31E-01
~7.60359E~-02
-1.00403E-01
9.20756E-02
-6.37535E-02
-5.72545E-01
-2.45023E-01
-3.08983E-01
1.21933E-G¢
9.73156E-G1
4,736426-01
1.97129e-01
~1.31593E-01
8.28764E-01

TOTAL ELEMENT
LORD

5474.,6242
1836.07T0
5474,.6242
1835.07T0
5474.6242
1836.0770
5474.6242

3.15854E-02

= . 2670.548 P.L.]1.
= 42028.130 POUNDS

COMMENTS

SIGN CHA

NGE IN TB

SIGN CHANGIZ IN DB
SIGN CHANGE IN LB

LBS
LBS
LBS
LB3
LBS
LBs
LBs

"ELEMENT
TYPE

FLAT PLATE
FLAT PLATE
FLAT PLATE
FLAT PLATE
FLAT PLATE
FLAT PLATE
FLAT PLATE

748
748
748
748
748
2T
748
748
748
748
744
744
44
40
736
740
736
736
32
736
732
728
124
716
716
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TEST PANEL TYPE NO § INTEGRAL PANEL 3 STIFFENERS

FOR MODE M = &
EXECUTION TIME IS . 9.320 CP-5ECONES
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SERRR 22320 3A RSB RERSTARY

*

*
*

EIXIEPAN IR ARL LRI EAIEEESE AFREXS

LOAL O FIRST EL. TOTAL LOAD CB-~VALUES
. {PLI} (FOUND S) (Buc, CET)
2000, GOCGOOULGo 31475.291 -9, 748825-62
2650. COUOGGCOO0 32262.163 -5,71851E-02
2100.6COGCO000G 33G49.045 -2.32494E-01
2150.066GCGGEO0GE 33835.927 -5,10982E-01
2260.GGLGGCOCO0 Js4522.809 ~8.63243E-01
2250.0GCGC00C000 35469.651 ~7.53945E-02
23C0. GOGGGCOOG0 36196,573 . -9.08531E-CG2
235G.GGOCCGo000 35983.455 -9.48193E-02
2404.00GGCOC000 3T7TC.33T7 -8.57183E-G2
| 2450.GOCCOGGOC0 38557.219 -6.59859E-02
2560 . GOGGLLOG00 39344.1061 -6.66689E-G1
2550 . BoOCTO0000 461306.983 -3.20654E-G1
2500 . DOCGLoO060 4G917.855 -1.06G21E-G1
2550 . 00CCOGOLHG 417G4,747 -2.04431E£-01
2760 . GLCOOEG0G0 - 42491 ,629 3.96171E-01 -
- 2655 . COOOLLOUOG 431733.435 -1.50724E-G2
2660 . GGLOLOGOO0 41862.124 -1.07651E-G2
2565 . GOOGGGGLO0 41540.812 -7.39055E-02
2670..00GOCGO000 42619.566 =7.71296E-01
2675 . DCOGOGOCE0 42098.188 -4.69011E-01
2680. COCGOOOCGo 42176.876 -2, 56724E-01
2685 . 800COCOCO0 42255,565 ~1.16702E-01
2690.00006GCCO0 42334.253 ~5,21895E-01
2695 . GOGOLGOGE0 42412.941 1.63765E-01
2692 . 360GOGGOG0 | 42373.597 - -1.10215E-01
2695. 000GLODOOD 42412.941 1.637656-0G1
2693,50G565826346 42389.424 2.41819e-01
2693 .3844048058 £42387.515 2.8T9TBE-GL
2693.3746321913 42387.362 -8.58556E-01
2693.3747544608 42387.364 1.8676CE-GO1
2693.3747375357 42387.363 -2.05347E-01
ELEMENT LOADS .MOCE M 7
ELENM. LINE LOAD TOTAL ELEMENT
NO. (PLATE EL. ONLY} - LOAD
1 2893.3748 LBS/INCH 5521.4183
2 1755,2330 LBS/INCH 1853.7708
3 2653.3748 LBS/INCH 5521.41083
4 1753.2330 LBS/INCH 1851.7708
3 2693.3748 LBS/INCH 5521.,4183
] 1755.2330 LBS/INCH 1851.7708
? 2693.3748 LBS/INCH 5521.4183

COMMENTS

SIGN CHANGE IN LB

SIGN CHANGE IN DB

SIGN CHANGE IN DB

ELEMENT

Tvee
LBS  FLAT PLATE
LBS  FLAT PLATE
LBS  FLAT PLATE
LBS  FLAT PLATE
LES  FLAT PLATE
LBS  FLAT PLATE
LBE  FLAT PLATE

AXTAL STRAIN 1S

J.18554E-03

e
776
778
776
780
780
780
780
780
76
776
776

g23dJ A

768
68
764
754
764
764
760
756
748
740
748
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ICAL LOAD

LINE LOAD ON EL. ONE = 2693.375 P.L.1.
TOTAL LOAD = 42337.364 POUNDS
MODE M = ? )

TEST PANEL TYPE NO 5 INTEGRAL FANEL 5 STIFFENERS

TIMING
For uoﬁz M oz T .
EXECUTION TIME IS ‘ 11.6802 CP-SECONDS

. & IR



CAETBBAIIFFIRFTILITFIZITRREIIZAT

* »
. MODE IS M= 9 L]
* %
» *

FEEERRERRERHF X BT HLXHXI XYL EN

SPOTCHECK 1
- SPOTCHECK 2

LOAD ON FIRST EL.
(PFLD)
2000.0000GGGCGO
2056 .060006GG6G0
2100.0000000G00
2150, 00CO0GGE00
2200. COOGGOCLOD
2250.000GGGG0U0
23G0.00GCCoGo00
23%0.0G00GOCOG0
2400.00666060G6G0
2450, 060C0GO000
2500.6666G600G00
2550, 6000066000
2600.00006GOC00
2555, 0000066000
2560. 0060000000
2565, 00060000000
2562. 5060000600

2561 .2505006000

2560, 62560060006

LOADING
LOACING

2475.000
2525.000

TOTAL LOALD

{POUNCS)
31475.281
32262.163
330649.045
33835.927
34622.809
35409.691
36196.573
36983.455
37770.337
3g557.219
39344.101
40130.9283
40917.865
40209.671
40288.360
40367.048
40327.704
40308.632
40298.196

LES/IN
LES/IN.

PB-VALLUES

(BUC. DET}
-7.14225E-02
-8.77073E-0U1L
-6.31925E-01
-4,23739£-01
-2.51295E-01
-1.,45655E-01
-7.15480E-02
-4.75860GE-01
-1.55954E-01
-5.57370E-01
-9,136T1E-G1
-6.87441E-01

-2.5T02GE-O1

-9.45150E-02
-4.29495E-01
-1.60648E-01
-2.15984E-01
-1.44037E-01
-7.13585E-02

BUCKL.DET.
BUCKL.DET.

COMMENTS

PBLE ROOT ENCOUNTERD

DBLE ROOT ENCOUNTERD
DBLE ROOT ENCOUNTERD
DELE ROOT ENCOUNTERD

CELE ROOT FOUND

THE DOUBLE RCOT IN THE P-VALUES ARE IN THE FOLLOWING INTERVAL
WHICH WILL BE ISNORED IN THE SEARCH FOR THE CRITICAL LOAD

Xy
NXL

SPOTCHECK
SPOTCHECK
SPOTCHECK
SPOTCHECK

N e

LOAD ON FIRST El.
L

256G. 6250000000
2565.6250000000
2570.6250000000
2575,6250000600
2580.6256000000
2385, 6250000000
2390. 6250000000
2595.6250000000
2600. 6250000000
2608. 6250000000
2635, 6250000000
2703.6250000000
2754, 6250000000
2003.6250000000
2835.4250000000
£830. 6290000000

2560.525
2560.000

-. 207 %24
-.140%2%x

LOADING
LOADING
LOADING
LOABING

2563.125
2568.125
2780.625

LBS/IN
LES/IN
LBS/IN
LB5/IN

BUCKL.ZET.
BUCKL.LET.
BUCKL.CDET.
BUCKL.LET.

-.50142%%
N
-. 584424k
-.503820x

2830.625

TOTAL LOAD
(POUND'S)
40298.196
40376.884 -
40455,572 .
40534.260
40612.948
40691.637
40770.325
40849.013
40927.704
41006.589
41793.274
42580.153
43367039
44195.917
44940,800
44947,358

DB-VALLES

(BUC. DET)

-7.13585E-02
-2.36980E-01
~1,09015E-01
-3.40042E-04
-7.44653E-04
-8.38589E£-02
~1.33439E-01
-1,94723E-08
-2.66515E-01
-3,47123E-01
-7,13216E-02
-9.16060E-01
-2.01035E-01
-7.76307E-04
-7, 71968E-01
-5.029358€-01

COMMENTS

WAS SIGN CH. MIS3ED

SPOTCHECK 2

812
808

824
820
a2
820
az20
820
820
816
816
B12
s0a
800
8C0

788
792
788
T84

788
192
796
788

92
796
796
1796
800

800
800
800
804
800
800
T
T
Teh
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SVBDIVISC FREVIOUS STCPS TO CHECK FOR TWd OR MORE ZERO-CROSSINGS

NXyU = 2835.625
STLDL = 2805.625
M = 8
LoAE OR FIRST EL. TOTAL LOAD DB-VALUES
(PLI) (POUNDS) (BUC. CET)
2005, 6250000000 4415%3.917 -7, 7630TE~0OL
2610.652500000G0 44232.606 5.89601E-D2
2806.1250000000 44161.785 -4.15144E-01
2806.62500G0CC0 44169.655 -9.95473E-02
2a8Q7, 1250000000 44177.524 1.73246E-01
2806.6074594451 44172.527 7.70801E-C2
2806.7390331 544 44172.394 5.06035E-01
2805,793817T4760 44172,391 -1.68094E-01
2605.73858455423 44172.391 6.34385E-02
ELEMENT LOADS MOLE M a8
ELEM. LINE. LOAD TOTAL ELEMENT
NO. (PLAT‘E EL. ONLY) LOAD
1 2006.7988 LBS/INCH 3753,9375
2 16829.1498 LBS/INCH 1929.7530
3 2806.7988 LBS/INCH 5753.9376
4 1829.1498 LBS/INCH 1929.7530
3 2806.7988 LBS/INCH 3753.9376
6 1829.1498 LBS/INCH 192%.7530
L4 2805.7988 LBS/INCH 5753.9376
AXIAL STRAIN IS 3.31969€-03

CRITICAL LOAD

LINE LOAD ON EL. ONE

TOTAL LOAD
MOCE W = 8

TEST PANEL TYPE NO 3

FOR MXCE M =
EXECUTION TINE 18

2806.799 P.L.I.
44172.331 POUNLS

18.830

" INTEGRAL PANEL 5 STIFFENERS

CP-SECONTS

COMMENTS

SIGN CHANGE IN DB

SIGN CHANGE IN 0B

LES .

LES
LBs
LBS
LBs
LBSs

LBS

ELEMENT
TYPE

FLAT PLATE
FLAT PLATE
FLAT PLATE
FLAT PLATE
FLAT PLATE
FLAT PLATE

FLAT FLATE -

788
92
788
788
783
To4
776
Té8
776
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PROGRAM SDI25A/DUCLASP CERTIFIED 11/2G/7C . NOV 23 TO
BUCKLING LOADS OF ORTHOTROPIC LAMINATED STIFFEMEL PLATES

LOADING == UNTAXTAL COMPRESSION R

BOUNDARY CONDITIONS -~ LOADEER EDGES AREC SIMPLY SUPPORTED, UNLOALEL SIDES

ARE FREE, SIMPLY SUPP., CLAMPED, OR SUFPORTED DY BEAM ELEMENT

BEAM ELEMENT HAS SIMPLY SUPP. ENDS AT ITS NCUTRAL AXIS

By A e e e AR KRR Aot b ot e e ey Ay e de e e e e e Sk

TEST PANEL TYPE NO 5 INTEGRAL FANEL $ STIFFENERS

LOAD M

43849.723 5

42628.130 6 -

42387.364 7 -

44172391 8

ELEMENT LOADS MXCE M 6

ELEM. - LINE LOAS TOTAL ELEMENT ELEMENT

NO.  (FLATE EL. OMLY) LOAD TYPE

1 2670.5484 LBS/INCH 5474.6242 LBS FLAT FLATE
2 1740.3574 LBS/INCH 1836.0770 LBS FLAT PLATE
3 2670.5484 LBS/INCH 5474.6242 LBS FLAT PLATE
4 1740.3574 LBS/INCH 1836.0770 LBS - FLAT PLATE
s 2670.5484 LBS/INCH 5474.6242 LBS FLAT FLATE
6 . 1740.3574 LBS/INCH 1836.G770 LBS FLAT FLATE
7 2670.5434 LBS/INCH 5474.6242 LEBS FLAT PLATE

AXIAL STRAIN 1S ' | 3.15854E-03

FINAL RESWLTS wss}

CRITICAL LOAD = 42028.130
MOCE M= 6
GENERATE BUCKLING CETERMINANT FOR EIGENVECTOR SOLUTION
FOR A CRITICAL LOAD  2670.548
AND A CRITICAL MODE 8

pEX IDX  5.26381£-01 . 780
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TEST PAMEL TYPE M) 5  INTEGRAL PANEL 5 STIFFENERS

TOTAL EXECUTION TIHE 15 51.425 CP~SECONCS

TIMING BREAKDOWN By SUBROUTINES (IN CP-SECWDS)

ROUTINE TOTAL TIME NO. OF CALLS  AVERAGE PER CALL
0B ' 50.186 | 135 371748
br 0.000 3358 . 0.00000G
RGE | 0.0Go 10378 0.006000
DBGENS - 0.000 21060 0.006GC0
ZARK ' - '1.606 282 005695
pET ' 23.482 135 173941
DM o 0.000 178 ' u.m;owa
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PROGRAM S0325A/3UCLASF CERTIFIED 11/20/7C Nov 25 70
BUCKLING LOADS OF ORTHOTROPIC LAMINATED STIFFENED PLATES

LOADING —==" UNAXIAL COMPRESSION

BOUNMDARY CONDITIONS -- LOADED EDGES ARE SIMPLY SUPPORTED, UNLOADED SIZES
ARE FREE,: SIMPLY SUPP., CLAMPED, OR SUPPORTED BY BEAM ELEMENT

BEAM ELEMENT HAS SIMPLY SUPF. ENES AT ITS NEUTRAL AXIS

0 e AR A e ok s et e e St i g e st e e sieclt S At ke g o e e e e g oy palh e e e X A

: TEST PANEL TYPE NO 3 INTEGRAL PANEL 5 STIFFEMERS

x EIGENVECTOR *

x AN *
* RELATIVE DISPLACEMENTS *
o e o Xk - —- :‘:‘_\'dl'*"rk"x
BANCWIDTHS

START BLOCK -—-

LOMER BANDWIDTH 13
UFFER BANDWILTH 13

REFETITIVE BLOCK -— .
LCWER BANTDWILTH 13

UPFER BANCWICTH ' 13
END BLOCK ---

LOWER BANCWIDTH 13
UPPER BANCWIDTH .13

TOTAlL, BUCKLING DETERMINANT BANDCWIDTH 5. ---

LOWER BANDWILTH 13
UPPER BANDWIDTH .13
TOTAL ARRAY SPACE REQ. FOR EIGENVECTOR 3696
START BLOCK  ---NUMBER OF ROWS  IDAY = 20
- —~-NUMBER OF COLUMNS 1DAX = 24
REPETITIVE BLOCK  ---NUMBER OF ROWS  ICHY = 16
---NUMBER OF COLUMNS IDMX = 24

END BLOCK  ---MUMBER OF ROWS  IDBY = 20

: ~~-NUMBER OF COLUMNS IDBX = 24
BANDWIDTH IDTH = 27
TOTAL NUMBER OF ROWS NORD = 88
TOTAL NUMBER OF DIAGOMAL BLOCKS IN DET. MBB = 5
CORE REQUIREMENTS
sTaRT BLOCK ARRAY SPACE 0006001510 OCT 840 DEC
ACPETITIVE BLOCK ARRAY SPACE 0000003240 OCT 672 DEC
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END BLOCK ARRAY SPACE OGGUGGIS1G OCT

FOR MORE OR LESS STIFFEMERS ADJUST FIELD LENGTH ACCORDINGLY

840 DEC

MAX. NO.. OF BLOCKS WITH 70k FIELBLENGTH RESTRICTION IS

**** “‘_‘:‘:‘-&&&\&J sl 4-:‘ s Ly S e

ASSUMING AN OVERLAY LENGTH OF

C LEXCLUDING BLANK COMMON)

REQUIRED FIELD LENGTH IS5

FOR EIGENVECTOR SOLUTION

‘GCGOG2TO00  OCT.

oo0Go36166  OCT.

24
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SETERMINANT FROM OLKSET  ---3ET = DEX#(2#:[0X)
pEX  IDX 5,25391E-01
DETERMINANT FROM DECOMPOSED MATRIX

BEX 10X 5.263179E-01

T80

re0
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ET1GENYLLTOR

ITERAT
NORMAL,
VECTOR

ION NUMDER
12ING FACTOR

-6,8301343E-02
-1 .177T752E-04
2.37362436-01
~3.3448624E-0S
1.2758653E-01
1.897213125-04
~3.4848231E-UL
1.8506581E-05
+~1.6046313E-G1

~2.2309042E-04°

3.8827313E-01
1.07934071E-10
1.6046316E-01
2.102318CE-04
-3.4848248E-01
-1.,8306281E-03
-1.2758669E-01
-1.6149621E-04
2.3736276E-01
3.3448911E-05
6,8501450E-G2
-1.9385921E-05

EIGENVECTOR

e e e e e

ITERATION NUMBER

NORMAL

VECTOR

IZING FACTOR

-6.850131E-02
~-1.3777999E-04
2.3736250E-01
-3.3449T99E-05
1.2759667E-01
1.8971920E-04
-3.4848266E-01
-1.8046320E-01
-2.23092926-04
3.8827313E-0L
-8.1199653E-12
1.60463206-01

2.1022966E-04.

=3.4848267E-01

-1.8506434E-05

~1.,2758667TE-01
-1,6149783E-04
2.3736250E-D1
3.3448T91E-0%
6.8301393E-02
=1.9385061€-05

EICENVECTOR

ITERATION NUNBER

1
{.6002842E+07

1.4626479E-C2
-7.3527369E-03
1.3983271E-C1
1.848669CE-G2
-§.8444C97E-G2
1.0073153E-02
~2.0529798E-01
-1.0128612E-62
1.849G529E-02
-1.0T12161E-CG2
2.2873936E-01
-1.8032717E-07
-1.4746994E-62
9,1450565£-03
-2.0529807E-01
1.0128201E-C2
T.9799941E-03
-5.8060448E-03
1.3983291E-01
-1.8487125E-02
1.1701546E-04
-3.1759342E-04

2
1.61G67661E+08

1.4526483E-02
-7.3527221E-03
1.3983275€-01
1.8486934E-02
-1.84441135E-02
1.0079204E-02
-2.0529818E-01
-1.0128422E-02
1.8490524E-02
-1.0712453E-02
2.2873936E-01
1.1598600E-08
-1.4747003E-02
9.1450994E-03
-2.0529619€-01
1.0128402E-02
7.9799760E-03
-5.8060095C-03
1,3983276E-08
-1.8486925E-02
1.1701402E-04
~3.1729067E -04

4.9550348E-02
1.3382886E-85
-6.1132075E-01

-1.5521548E-04 .

-3.4410270E-G2
1.6149950E-04
8.9751909E-01
8.3393C1TE-OU5
1.2314665E-02

-2.1022847E-04

-1, 00CGLGCE+COD

-2.5622243E-09
1.2314513E-62
2.23055856-04
8.9751952E-01

-8.8402827E-G5

-3.4410225E-02

-1.8971532E-04

-6.1132161E-01
1.5520981E-04
4,9550367E-02
1.1778319€-04

4,9550354E-02
1.9385100E-05
~6,1132093E-61
-1,.552125TE-C4
-3.4410307E-G2
1.6149755£-04
8.9752G00E-01
8.8400361E-05
1.2314609E-02
-2.1022950E-04
-1 .600CO00E+C0
1.4190592£-10
1.2314608E-02
2.2309253E-04
8.9752003E-04
-8,8400617E-05
-3.4410307E-02
-1.8971886E-D4
-6,1132095€-01
1,5521274E-04
4,9550355E-02
1.4TPTITIE-D4

-1.1701264E-04
3.1699733E-04
1.3663306E-01

~1.9342617E-02

-~-T7.9799751£-03
5.8062544E-03

-2.0G57519E-01
1.G470687E-02
1.4746984E-02

-9,1447904E-03
2.2347981£-01
3.4353167E-07

-1.8490522E-02
1.0712423E-02

-2.0057623E-01

-1.0469944E-02
1.8444163E-02

-1.0078895E-02
1.3663326E-01
1.9343424E-02

~1.4626493E-02
7.3530030E-03

-1.17014G3E-04
3.1729007E-04
1.366330G9€-01

-1 .9343059€E-02

~7.9799765E-03

5.8059929£-03
-2.0057640E-01
1.0470339E-02
1.4747003E-02
-9,1450760£-03
2.2347980E-01
-2.11768052E-08
-1.8490524E-02
1.071212TE-02
-2.0057640E-01
-1,0470301E-02
1.8444115E-02
-1,0079176E-02

- 1.3663310E-01

1.9343033E-02
-1 .4626483E~02
?.,3527060E-D3
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NORMALIZING FACTOR
VECTOR
-6.8501391E-02
-1,1777999E-04
2.3736250E-01
~3.3448799€-05
1.2758667C-04
1.8971920E-04

-3.4848266€-01

1.8506443E-05
-1.,604632GE-01
-2.2309292E-04
3.8627313E-01
-8.31199747E-12
1.5046320E-01
2.1022996E-04
~3.4849267E-01
~1.8505434E-05
~1.2738567E-01
-1.6149783E-04
2.3736250E-01
3.3448791E-05
.6.8501393E-02
~1.,9385G6:£-05

1.3107666E+08

1.4625433E-02
-7.3527224€-03
T 1.3983275E-01
1.8486934E-02
-1,84441156-02
1.00792G1E-02
-2.0529818E-01
-1.0128422E-02
1.8490524E-C2
-1.0712153E-02
2.2873936E-01
1.1598614E-03
-1.4747603E-02
9.1450994E-03
-2,0529813£-01
1.01284625-62
7.9799768E-03
-5,3060G35E 63
1.3983276E-01
-1.8486921E-0G2
1.17014G2E-C4
-3.1729C37E-04

4,9550354€-02
1.9385100E-05
-6.1132093E-01
-1.5521257E-04
-3.4410307TE-02
1.6149755E-04
8.9752000E-02
8.8400361E-03
1.2314603E-02
~-2.1022950E-04
-1.00GOGOOE+GD
1.419G603E-10
1.2314608E-02
2.2309253E-04
8.9752001€-01
-8.84C0517E-05
~-3.4410307E-G2
-1.8371886E-04

~6.11320956-01

1.55212T4E-04
4,93550355E-02
1.1777I7TE-CS

-1,1761403E-04
3.1729007E-04
1.35633095-01

-1.9343059E-02

-7.9799765E-03
5,8059929E-03

-2.005764GE-0L
1.0470339E-02
1.4747003€-02

-3,1450760E-03
2.2347980E-01

-2.1178077€-08

-1.8450524€-02
1.0712127E-02

-2.005764GE-01

-1.0470301E-02
1.8444115E-02
-1.0079178E-02
1.3563310E-01
1.93430635€-02
-1.4626483E-02
7.3527063E-03
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PROGRAM SO325A/DUCLASP CERTIFIED 11/2G/70 NGV 23
BUCKLING LOADS OF ORTHOTROPIC LAMINATED STIFFENMEL PLATES

LOADING <=~ UNAXTAL COMPRESSTON

BOUNDARY CONDITIONS -- LOADED EDGES ARE SIMPLY SUPPORTED, UNLOACED SIDES
ARE FREE, SIMPLY SUPF., CLAMPED, OR SUFPORTEL BY BEAM ELEMENT

BEAM. ELEMENT HAS SIMPLY 5UPP, ENLS AT IT5 NEUTRAL AXIS

e 3300 s 2 X AR A A e e e A S S S oy o il e S dedec

0

TEST PANEL TYPE NO 5 INTEGRAL PANEL 5 STIFFENERS

ﬁﬂ‘ ) g i g 53 """1'&
4 _ %
3 RELATIVE DiISPLACEMENTS x
2 %

. A b e to g b Ly b e ety e e e i

P-VALUES ---ROOTS OF EQUILIBRION EQUATIONS---

ELEMENT TYPE NO. 1 .
-=IMAGINARY PLY

PTT . . -=-REAL
~1.30176513235563E+01L G. 5
8.50335671130288E+01 c. . &
3.598522571819472+01 -1.G3127591389610E+00 1
) 3.59852257181344€+61 1.03127591388855E+00 1

" ELEMENT TYPE NO. 2

PIT --REAL ——IMAGINARY PIY
| —-3.92158347529546E+01 D. 5
1.11231750542427E+62 G.: 6
3.59852257181954E+01 =1.03127591391060E+00 1
3.5985225T181935E+01 1.0312759138G788E+0G0 1
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RCLATIVE CISPLACEMENTS

ot -

START SECTION  ~~BLOCK MO. 1
ELEHENT NO. t TYPE PLATE EL.
¥-COORE. W-CISPL. v-CISPL.
-1.0250 -.GOOGO -.G0B42
-.5125 -.07294 -.560G43
.0GG0 -.12249 -.60073
5125 -.11822 -.00114
1.6250 .0C233 " ~.G0166
ELEMENT NO. 2 TYPE FPLATE EL.
Y-COORED. W-CISFL. y-DISFL.
-.5275 .GG166 66293
-.2637 .27924 00269
.00 .75115 00249
.2638 1.28582 .6G235
1.84106 .ooz2!

5275

REPETITIVE SECTION

e b e e i e e

ELEMENT NO.
¥-+COORE.

-1.0250
-.5125
. .00GG

5125
1.0250

ELEMENT NO.
¥Y—COORD.

-.5275
-.2637
0000
+2638
.5278

REPETITIVE SECYION

2 i -

.ELEMENT NO.
Y-COORD.

-1.0250_
-.5135

0000 -

5125

1.0230 °

ELEHENT NO.
¥-COORD.

~. 5275
-.383?
-8000

"3 TYPFE
W-CISFL.

00293
+16373
22875
13449
-.0G161

4 TYPE
W-DISPL.

-.00233 °
-.45992
-1.10284
-1.88713
-2.70297

s TYFE

w-DISPL.

-.00161
'-2197,
-.28769
-.23076

.goooo

4 TYPE
U-DISPL.

+0026}
45673
1.22877

--BLOCK NO. 2

FLATE EL.
V-DISPL.

-.00166
-.0o063
-GOo31
00129
+G6233

PLATE EL.
v-DISFL.

-.00161
-.00147
~.GO137
-.00129
-.060121

~-BLOCK NO. 3

PLATE EL.
v-DISPL.

00233
00106
-.00012
-.001}
-.00261

PLATE EL.
V'DISPL.

00000
.00000
-00000

WIDTH

WIDTH

WICTH

WIDTH

2.0500 ;
: §
i

1.0550

2.0500

1.0550

2.0500

1.05%¢
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2638 2.10268 .GOGGO
,827% 3.01166 .G6GOC
REPETITIVE SECTION  --BLOCK N3, 4
ELEMENT NO. 3 TYPE PLATE EL.
Y-COORD. W-D1SPL. V-DISPL.
~1.0250 -.0OGOD -.00261
-.81258 .23076 -.G0131
.BGOG 28769 -.00012
.3125 .21975 00166
1.0250 00161 .00233
ELENENT NO. 4 TYPE PLATE EL.
¥-COORE ., W-BISPL. V-DISFL.
-.5275 -.00233 .00161
-.2637 -.40992 .00147
.0oLo -1.16284 00137
2638 -1.88713 00129
.5275 -2,70297 .00121
END SECTION  --BLOCK NO. 5
ELEMENT NO. 5 TYPE PLATE EL.
Y-COORD. W-DISFL. V-DISFL.
l1.0250 .GG161 00233
+-5125 -, 19449 .00129
00000 - 22875 00031
5125 -.16373 -.00G63
1.0250 -.00293 -.00166
ELEMENT NO. & TYFE PLATE EL.
¥-COORD. W-DISPL. v-DISPL.
-.527% .0G166 -.00293
-.2637 27924 -.00269
.0000 75119 -.00249
2638 1.28542 -.00235
.5275 1.84106 -.00221
ELEMENT NO. 7 TYPE PLATE EL.
¥-COORD. W-DISPL. V-DISPL.
-1.0250 -.00293 -.00166
-.5125 11822 -.00114
0.0000 12249 -,00073
.5125 07294 -.00049
1.0250 -.00000 -.00042
TIME FOR EICENVECTOR SOLUTION IS

1.268 CP-SEC.

-

Page 6.37




APPENDIX A

Generalized Eigenproblem for Large Matrices

with a Repeated Block Structure

Author:  Claude R. Gagnon, Mathematical Analysis Unit, Boeing Computer Services
Division.

ALl Problem Definition

The analysis of buckling loads for stiffened panels gives rise to large, sparse, square
matrices (G) which have a repeated block structure as illustrated in Figure A-1. The
matrix G is a function of the load (A) and the problem is to calculate the critical
load; i.e., the smallest positive value of A for which the equation

G(A)x =0

has a nontrivial solution. The eigenvector (x) corresponding to the critical load is
also desired in some cases. This problem constitutes the general eigenproblem.

The ensuing sections of this appendix describe the numerical methods used for computing
the critical load and the corresponding eigenvector.
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FIGURE A-1. Block Structure of Load Matrix for Stiffened Panels
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A,2 Critical Load ComEutaﬁoh

In accordance with the theory of linear equations, a value of A for which the equation
“G(AXx =0

has a nontrivial solution is equivalent to finding A such that
det G(A) =0 .

Thus, the critical load problem reduces to that of finding the smallest positive root for
the real valved determinant function. This requires the use of an iterative scheme
where determinant values corresponding to systematically refined root estimates are re-
peatedly evaluated.

While there are numerous well known techniques (Ref. 1) for finding roots, there are
two particular difficulties with the structural buckling Toad problems:

(@) The matrices G are typically very large so that it is necessary to take advantage
of their special structure in order to minimize the computation time and storage.

(b) Determinant values can easily exceed the floating-point range of the computer.

Subroutine BLKDET (see Ref. 2, Section 3.6) was designed to take advantage of the
special structure of the G matrices. This subroutine can accommodate arbitrarily large
matrices entirely within the computer core storage, provided only that the core can con-
tain the submatrices A, B, and C (Figure A-1) ond a modest amount of working space.

The problem of limited range for floating point numbers was handled in BLKDET by repre~
senting the determinant value with two numbers a and b where

det G(A) =a - 2°

and where

0.0625 o] <1

The smallest positive root A is initially determined within o broad interval by a stepping
procedure. A sequence of steps are taken away from an input initial estimate of A
The determinant values are tested for sign reversals, so that, ultimately an interval con-
taining a root is established. Whether the root thus isolated is the smallest one or not
depends on the initial estimate of A .
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Subroutine DETZER, (see Ref. 2, Section 3.9), which is designed to accept the two
numbers a and b from BLKDET, further isolates the root within the interval established
by the foregoing stepping procedure. The DETZER procedure is particularly efficient

in obtaining the high precision roots required to satisfy eigenvector convergence criteria
(see Section A.3 below).

The entire procedure for finding the critical load is summarized in Figure A-2.
An exact root safisfies the equation
det G(A) =0 ;

however, in the actual computation exact roots are seldom obtained. A root A is
determined such that

Xu<?\ <Ap
and
det G_()\a) + det G()\b) =0
where
(Ab - )\d)<5
and € is an acceptable error.

When A satisfies the foregoing conditions, then it is correct to within t e no matter
how large det G{A) may be.
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FIGURE A-2.
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A.3  Eigenvector Computation

The method used to compute the eigenvector corresponding to a given root A is
Wielandt's method of inverse iteration (Ref. 3).

A stable method is of prime importance. Wilkinson [3] shows Wielandt's method to
be stable for the standard eigenproblem

(A - pI)Z.=0 .

~ Stability for the general eigenproblem can be established from the stability of the
standard eigenproblem as follows.

The standard eigenvalues and eigenvectors of a perturbed matrix A + ¢B converge to
those of A as €—= 0 (Wilkinson [3, pp. 66-67]); i.e.,

(A + €B - p)Z—=(A ~ul)Z =0 a5 €e—0.

If .\, is an eigenvalue of the general eigenproblem G(A)x = 0, then the eigenvector
Z corresponding to # = 0 in the standard eigenproblem

(G(A ) - wliZ =0
is precisely the eigenvector x| satisfying
G(k k)x =0 .

Thus, assuming that )\L is an approximation to )\k, then G()\;) satisfies

* -
G(kk) = G()\k) + €B
for some scalar € and matrix B, and
[G()\i) - pI]Z*—"[G()\k) - ullZz =0
* .

- as )\k—b- J\k 3
‘Thus it can be concluded that the general eigenvector problem is equivalent to the
standard eigenvector problem where the vector of interest corresponds to a zero eigen-
value, and that stability of Wielandt iteration for the standard eigenproblem implies
stability for the general eiggnproblem.
The implementation of the Wielandt method in the subroutine EIGV is described in Relf. '

2, Section 3.13, A brief summary of Wielondt iteration for the standard eigenproblem
is given below: : _
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THe solution of
AX = uZ
consists of repeated solutions of
A - wiip® = b0

wh re m* is an aglproximate eigenvalue and b“) is chosen in some manner (typically
b/ =[1,1,...,11'). This is equivalent to repeatedly solving

G( )t*)x(i) - b(i)
for the general eigenproblem.

The justification of the Wielandt iteration method for the standard eigenproblem is to
be found in Reference 3.

From a practical point of view, when the eigenvalues are determined to a sufficiently

small ¢ as noted in A.2, then elgenvector convergence is obtained in two iterations.,
A third iteration is frequently used to verify the convergence. '
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APPENDIX B

Test Problems Specified by NASA

a. Orthotropic Flange-Web

Buckling of a simply supported web with an orthotropic flange should be
studied. Two configurations should be investigated, one which buckles
locally, and the other which buckles in @ beam-column mode. Results for -
local buckling should be compared with Figure 6 of Reference 1. '
Orthotropic properties assigned to the boron layer should be as follows:

= 30.25 x 106 (filament direction)
6

En

E22 =2.03 x 10

: (units - p.s.i.)
vip = .346

G 6

12 = -3249 x 10

b. Results for the beam-column mode should be compared with the following,
result: '

For Figure 7 (ref.), if the web is #imply supoorted and

t b
F _ W . .
-'r_‘; =3, f_\: 30, the buckling coefficient kw for a

section with length -E!:—- = 10 is approximately 1.56.
w

. " Truss~-Core Sandwich Plate

Local buckling of a nlate with equal-width elements should be investigated and
comnared with results presented in Reference 2. In addition, two truss-core sand-
wiches designed to buckle locally in one case with the core restraining the face,
and in the other case with the face restraining the core. Results should be com-
pared with these nresented in Figure 5(a) of Reference 2.
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3l. Discretely Stiffened Plate

Buckling of a simply supported plate with a single eccentric beam stiffener
should be investigated. Two configurations should be studied one with a deep
stiffener (asymmetric buckling) and one with a shallow stiffener (symmetric
buckling). Results should be compared with those presented in Figure 5 of
Reference 1 and with Reference 3.

4. Plate with Multiple Stiffeners

T-section and integral stiffened plates with ot least 5 stiffeners should be
studied. The T-section plate should be sized to buckle locally and results
compared with Reference 4. The integrally stiffened plate should be sized
to buckle by general instability and results compared with Equation (A3) of
Reference 5.

In all of the cases described in Paragraphs 1 to 4, it would be desirable (where
possible) to investigate the buckling mode shape as well.
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AFPENDIX C

CONVERSION OF UNITS USED IN ThiS DOCUMENT TO SI UNITS

: . 1 ) . . .
Conversion facfc»rs( ) for the units used in this document are given in the following
table:

TABLE C.1

CONVERSION FACTORS

Units used Conversion
Physical qucmhi;,f ‘n this docoment fai:ior SI' Unit
Length in. 0.0254 meters (m)
| ? L. 2 2.
Stress, modulus Ibs/in. 6.895 x 10 newtons/meter. (N/m’ }
Load per unit length Ibs/in. 1.751 x 105 newtons/meter (N/m)

(pourids per lingar inch, PLI)

*Multiply units used in this document by conversion factor to obtain equivalent
value in S! units.

(1) Comm. on Metric Pract.: ASTM Metric Practice Guide NBS Handbook 102,
U. 5. Depoartment Commerce, March 10, 1967.

| -Pﬁge C.1






